Bowerman Power LFG, LLC

> 11006 Bee Canyon Access Road Irvine, CA 92602

September 2024

Prepared by:

Office Locations: Los Angeles, Orange County, Riverside, Ventura, San Diego, Fresno, Merced, Bakersfield, Berkeley, San Francisco

> Tel: (949) 248-8490 Fax: (949) 248-8499

Copyright ©2024, Yorke Engineering, LLC

Air Quality, GHG, HRA, AQIA, and LST Study for a Renewable Natural Gas Facility in Irvine, CA

Prepared for:

Bowerman Power LFG, LLC 11006 Bee Canyon Access Road Irvine, CA 92602

September 2024

Table of Contents

1.0	INTF	RODUCTION	1
1.1	Pro	Diect Description	
1.2	Pro	bcess Description	2
1.3	Fa	cility Location	
2.0	ASSI	IMPTIONS	4
3.0	AIR	QUALITY AND GREENHOUSE GAS IMPACTS ANALYSES	5
3.1	CF	OA Thresholds of Significance	5
	3.1.1	<i>Criteria Pollutants. Toxic Air Contaminants. and Odors</i>	5
	3.1.2	Greenhouse Gases	5
3.2	Pro	pject Emissions Estimation	6
	3.2.1	Construction	7
	3.2.2	Operation	10
Reg	gional	CEQA Significance of Criteria Pollutants	11
	3.2.3	Construction	11
	3.2.4	Operation	12
3.3	Lo	calized Significance Threshold Analysis	14
	3.3.1	Construction	14
	3.3.2	Operation	14
3.4	Gr	eenhouse Gas Emissions from Construction and Operation	15
4.0	MOD	DELING AND HEALTH RISK ASSESSMENT	17
4.1	Di	spersion Modeling	
	4.1.1	Air Dispersion Model	17
	4.1.2	Modeling Options	18
	4.1.3	Meteorological Data	18
4	4.1.4	Terrain Data	18
4	4.1.5	Urban/Rural Dispersion Coefficient	18
4	4.1.6	Receptor Locations	18
	4.1.7	Buildings	20
4	4.1.8	Source Information and Release Parameters	20
4.2	Co	nstruction – Health Risk Assessment	23
	4.2.1	Health Risk Assessment Calculations	23
	4.2.2	Cancer Risk	24
	4.2.3	Chronic Hazard Index	24
	4.2.4	Acute Hazard Risk	24
	4.2.5	Construction HRA Results	25
4.3	Op	peration	
	4.3.1	Air Quality Impact Analysis	
	4.3.2	Operations – Health Risk Assessment	35
5.0	ANA	LYSIS OF AIR QUALITY SIGNIFICANCE CRITERIA	
5.1	En	vironmental Determination	
5.2	Mi	tigation Measures	

6.0	ANALYSIS OF GREENHOUSE GAS EMISSIONS SIGNIFICANCE CRITERIA4	13
6.1	Environmental Determination	13
6.2	Mitigation Measures	4
7.0	REFERENCES	15

Table of Appendices

APPENDIX A – CALEEMOD OUTPUTS
APPENDIX B – OPERATIONAL EQUIPMENT SPECIFICATIONS
APPENDIX C – CONSTRUCTION HRA MODELING RESULTS
APPENDIX D – EMISSION CALCULATIONS FROM OPERATIONS
APPENDIX E – OPERATIONAL AQIA MODELING RESULTS
APPENDIX F – OPERATIONAL HRA MODELING RESULTS

List of Figures

Figure 1-1: Proposed RNG Plant Location Diagram	. 3
Figure 1-2: Proposed SoCalGas Location Diagram	. 4
Figure 4-1: Air Dispersion Modelling Receptor Setup	19
Figure 4-2: Construction HRA Source Setup	21
Figure 4-3: Operational AQIA/HRA Source Setup	22
Figure 4-4: Maximally Exposed Receptors – Construction HRA Cancer Risk	26
Figure 4-5: Operational HRA MEIR and MEIW Receptor Locations	38

List of Tables

Table 3-1: SCAQMD CEQA Thresholds of Significance	. 6
Table 3-2: Land Use, RNG Plant, and SoCalGas Pipeline Data for CalEEMod Input	. 7
Table 3-3: Proposed Project Preliminary Construction Schedule by Phase	. 8
Table 3-4: Proposed Project Offroad Equipment Used for Construction Phases for CalEEMod	
Input	. 9
Table 3-5: Proposed Project Construction Traffic Summary	10
Table 3-6: Construction Emissions Summary and Significance Evaluation	12
Table 3-7: Operational Emissions Summary and Significance Evaluation	13
Table 3-8: Construction Localized Significance Threshold Evaluation	14
Table 3-9: Construction Greenhouse Gas Emissions Summary by Year	16
Table 3-10: Operation Greenhouse Gas Emissions Summary by Sector/Equipment	16
Table 3-11: Greenhouse Gas Emissions Summary and Significance Evaluation	17
Table 4-1: Source Parameters – RNG Facility Construction	20
Table 4-2: Source Parameters – SoCalGas Pipeline Construction	20
Table 4-3: Source Parameters – RNG Plant Operation	23
Table 4-4: DPM Emissions for RNG Plant and SoCalGas Pipeline Construction	23
Table 4-5: Construction HRA – HARP2 Model Options	25
Table 4-6: Summary of Construction HRA Results	26
Table 4-7: Criteria Pollutant Emissions from Operations – Thermal Oxidizer Unit	27
Table 4-8: Criteria Pollutant Emissions from Operations – Off-Spec Flare	27
Table 4-9: Criteria Pollutant Emissions from Operations – Generator Set with ICE	27
Table 4-10: TAC Emissions from Operations	28
Table 4-11: AQIA Background Concentrations	31
Table 4-12: AQIA Modeling Results for Project Operations	34
Table 4-13: Operational HRA – HARP2 Model Options	37
Table 4-14: Cancer Risk Results	39
Table 4-15: Chronic Hazard Index Results	39
Table 4-16: Acute Hazard Index Results	39

List of Acronyms and Abbreviations

AB	Assembly Bill
ADMRT	Air Dispersion Modeling and Risk Tool
AERMOD	AMS/EPA Regulatory Model
AMS	American Meteorological Society
AQIA	Air Quality Impact Analysis
AQMP	Air Quality Management Plan
BAAQMD	Bay Area Air Quality Management District
BMP	Best Management Practice
BPIPPRM	Building Profile Input Program for Prime
CAAP	Climate Action and Adaptation Plan
CAAQS	California Ambient Air Quality Standards
CalEEMod	California Emissions Estimator Model
CAPCOA	California Air Pollution Control Officers Association
CARB	California Air Resources Board
CEQA	California Environmental Quality Act
CH ₄	Methane
СО	Carbon Monoxide
CO_2	Carbon Dioxide
CO ₂ e	Carbon Dioxide Equivalent
DPM	Diesel Particulate Matter
FRB	Frank R. Bowerman
GHG	Greenhouse Gas
GLC	Ground-Level Concentration
HAP	Hazardous Air Pollutant
HARP2	Hotspots Analysis and Reporting Program, Version 2
HFC	Hydrofluorocarbon
HIA	Acute Hazard Index
HIC	Chronic Hazard Index
HRA	Health Risk Assessment
HVAC	Heating, Ventilation, and Air Conditioning
ICE	Internal Combustion Engine
LFG	Landfill Gas
LST	Localized Significance Threshold
LTS	Less Than Significant
MEIR	Maximally Exposed Individual Resident
MEIW	Maximally Exposed Individual Worker
MPO	Metropolitan Planning Organization
MT	Metric Ton
N_2O	Nitrous Oxide

NAAQS	National Ambient Air Quality Standards
NED	National Elevation Dataset
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
OCWR	Orange County Waste & Recycling
OEHHA	Office of Environmental Health Hazard Assessment
POR	Point of Receipt
PM10	Particulate Matter Less Than 10 Microns in Size
PM _{2.5}	Particulate Matter Less Than 2.5 Microns in Size
ppb	Parts per Billion
ppm	Parts per Million
REL	Reference Exposure Level
RELOOC	Regional Landfill Options for Orange County
RMP	Risk Management Policy
RNG	Renewable Natural Gas
ROG	Reactive Organic Gases
RTP	Regional Transportation Plan
SB	Senate Bill
SCAG	Southern California Association of Governments
SCAQMD	South Coast Air Quality Management District
SCE	Southern California Edison
scfm	Standard Cubic Feet per Minute
SCS	Sustainable Communities Strategy
SJVAPCD	San Joaquin Valley Air Pollution Control District
SoCalGas	Southern California Gas Company
SO_2	Sulfur Dioxide
SO _x	Sulfur Oxides
SRA	Source-Receptor Area
TAC	Toxic Air Contaminant
U.S. EPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
$\mu g/m^3$	Micrograms per Cubic Meter
VOC	Volatile Organic Compound

Air Quality, GHG, HRA, AQIA, and LST Study for a Renewable Natural Gas Facility in Irvine, CA

1.0 INTRODUCTION

This technical report includes air quality, greenhouse gas (GHG), health risk assessment (HRA), air quality impact analysis (AQIA), and localized significance threshold (LST) analyses for the construction and operation of a new renewable natural gas (RNG) facility that will be located at an existing landfill in Irvine, CA, which is within the jurisdiction of the County of Orange (the County) and the South Coast Air Quality Management District (SCAQMD).

1.1 Project Description

The Frank R. Bowerman (FRB) Landfill is a state-of-the-art, Class III, municipal solid waste facility owned by the County of Orange and operated and maintained by Orange County Waste & Recycling (OCWR). The FRB Landfill opened in 1990 and is the ninth largest landfill in the United States. The property spans approximately 725 acres of hillside with 534 acres allocated for waste disposal. It is permitted for 11,500 tons per day maximum with an annual average of 8,500 tons per day. The FRB Landfill is currently receiving approximately 8,000 tons of refuse per day. The FRB Landfill has enough projected capacity to serve residents and businesses until approximately 2053. The current permitted capacity is 266 million cubic yards, of which approximately 105.7 million cubic yards have been placed as of June 2022.

The Regional Landfill Options for Orange County (RELOOC) defines the permitted vertical and horizontal expansions for the Master Development Plan of the FRB Landfill (County of Orange 2006). The permitted vertical and horizontal expansions are implemented in phases to provide for sufficient landfill operation areas and not disturb all parts of the landfill at once. The Master Development Plan includes three Phase VIII subareas (VIII A, B, and C). The FRB Master Development Plan also includes several on-site stockpile locations for soil excavated as part of landfill phase development and operations. All soil stockpiles are within the landfill property. The soil is used for daily and intermediate cover, liner, road construction, and other related uses. Excavations are currently underway for the development of Phase VIIIA1. Soils excavated from the development of Phase VIIIA1 are stockpiled in the soil stockpile area.

The landfill gas (LFG) currently natively created is managed via a gas collection and control system, which includes vertical and horizontal gas extraction wells, a collection pipe system, and a flare station complex comprised of six flares. The Bowerman Power Plant, an existing 19.6-megawatt LFG-to-energy facility, was opened in 2016 and is an award-winning, public-private partnership producing enough electricity for the City of Anaheim to power 26,000 homes. Bowerman Power currently owns and operates the Bowerman Power Plant. It is located adjacent to the flare station and processes approximately 8,350 standard cubic feet per minute (scfm) of raw LFG to remove moisture and contaminants. The LFG not processed by the Bowerman Power Plant is incinerated at the flaring station.

Bowerman Power is working with OCWR to develop an RNG Plant at the FRB Landfill. The RNG Plant will be designed to process a portion of the excess LFG that has not been processed at

the Bowerman Power Plant and would otherwise require incineration at the existing adjacent flare station and then deliver the processed RNG to Southern California Gas Company (SoCalGas) via a pipeline. The RNG Plant layout will be comprised of two areas: the process equipment area and the control and electrical buildings.

The RNG Plant will be designed to process a maximum of 6,000 scfm of raw LFG at the inlet. The process will remove moisture, nitrogen, oxygen, carbon dioxide, hydrogen sulfide, volatile organic chemicals, hydrogen sulfide, and other minor impurities to meet the gas specifications of SoCalGas.

Excavation is currently underway for the development of FRB Landfill Phase VIIIA1. The soils removed during the excavation are stockpiled within the FRB Landfill's boundaries. The RNG Plant pad is expected to require approximately 70,000 cubic yards of fill material. This fill material will be extracted from within the soil stockpile area and trucked to the RNG Plant site for development of the RNG Plant foundation pad.

SoCalGas will develop a point of receipt (POR) facility that will receive RNG from the plant, odorize it, compress it, and insert the RNG into its pipeline. A 250-gallon odorant tank will be installed in the POR facility. SoCalGas will construct a new 12-inch diameter pipeline to convey the RNG from the POR on the Project site to the existing SoCalGas pipeline at the corner of Portola Parkway and Jeffrey Road, in the City of Irvine. The new SoCal Gas pipeline will be approximately 2.0 miles in length along Bee Canyon Access Road and approximately 0.4 miles in length along Portola Parkway, for a total of 2.4 miles.

The proposed RNG systems are intended to support continuous operation with appropriate equipment and components. To support minimal staffing, the RNG Plant will be automated to allow station operations. Under normal conditions, maintenance personnel will be on-site for site inspections and maintenance only as needed, and typically only during daylight hours.

The RNG Plant will be supplied with LFG from the existing flare station for processing into pipeline quality gas. The RNG Plant will be designed to produce RNG that meets the Product Gas Composition requirements as set forth pursuant to SoCalGas's Rule Number 30 requirements.

The RNG Plant will have two buildings: an electrical building, which is planned to be unoccupied, and a Control Building, which will be occupied by the operational staff. The process equipment will be placed outside on the RNG Plant pad. The Control Building will house the Control Center (computer stations) and lavatories, and the Electric Building will house the electrical room.

The POR facility will be 8,000 square feet and include an electrical shelter, analyzer shelter, automated control valve(s), filter separator, meter, odorant skid, aboveground piping and pipe supports, bollards, fencing, roadways, and gates.

Normal operational power will be provided by Southern California Edison (SCE) service. In case of SCE power outage, a natural gas emergency generator will be on-site to power critical facility safety and control systems. The generator will be used for temporary backup power only.

1.2 Process Description

The RNG Plant will consist of four main processes:

• A Landfill Gas Treatment System (LFGTS) comprised of subsystems to compress the influent LFG; remove particles, water, Volatile Organic Compounds (VOC), siloxanes, Hydrogen Sulfide (H₂S), Carbon Dioxide (CO₂), Oxygen (O₂), and Nitrogen (N₂); and

process the resulting gas by dehydration and compression; all to meet SoCalGas sales gas specifications. The LFGTS does not have its own direct emissions to atmosphere.

- A 32.9 Million British Thermal Units (MMBTU)/hr (at High Heating Value or HHV) Low-Nitrogen Oxides (NOx) thermal oxidizer, also referred to herein as a Thermal Oxidizer Unit (TOU), to continuously destroy streams of low-BTU tail gases that are produced from LFGTS; with up to 280 scfm natural gas as supplemental fuel.
- A 120.0 MMBTU/hr flare to destroy off-specification (off-spec) product and process gases, as well as gases vented during initial and periodic start-up operations and plant depressurization associated with shutdown operations; with a 0.10 MMBTU/hr pilot, fueled by natural gas, and operating continuously to allow for intermittent lower and higher heating value streams to be routed to the flare for disposal.
- A Caterpillar DG 150 generator set, driven by a 253 horsepower (hp) natural gas-fueled emergency Internal Combustion Engine (ICE), to provide backup power when grid power is unavailable.

1.3 Facility Location

The proposed site is located at 11006 Bee Canyon Access Road in Irvine, CA, which is within the jurisdiction of the County of Orange (the County). The facility is located in the unincorporated General Agricultural, Citrus Rural District (A1) zone. The nearest residential receptors are homes located in the City of Irvine, Portola Springs neighborhood, generally south of the Project site, on the south side of State Route (SR) 241 and east of SR 133. The nearest worker receptor is located at Jimni Systems Inc., located west of State Route 133.

Figure 1-1 is satellite imagery showing the location of the proposed facility, the surrounding area, highways, and the nearest receptors.

Figure 1-1: Proposed RNG Plant Location Diagram

to the Proposed RNG Plant

Air Quality, GHG, HRA, AQIA, and LST Study for a Renewable Natural Gas Facility Bowerman Power LFG, LLC

The new SoCalGas pipeline will run from the point of interconnect within RNG Plant boundary, down Bee Canyon Access Road to the existing SoCal Gas pipeline on the corner of Portola Parkway and Jeffery Road, as shown in Figure 1-2. The new SoCal Gas pipeline will be approximately 2.0 miles in length along Bee Canyon Access Road and approximately 0.4 miles in length along Portola Parkway, for a total of 2.4 miles.

The Project will be located in unincorporated Orange County within the sphere of influence of the City of Irvine, except for a small portion of the new SoCal Gas pipeline, which will be located within the City of Irvine.

Figure 1-2: Proposed SoCalGas Location Diagram

Nearest Worker Receptor

Proposed SoCalGas Pipeline

Nearest Residential Community to the Proposed Pipeline

Proposed

RNG Plant

Boundary

FRB Landfill Boundary

2.0 ASSUMPTIONS

The following sources of information were used in developing the emissions estimates for the proposed Project using the California Emissions Estimator Model[®] (CalEEMod). CalEEMod default settings that have a particularly important impact on the Project are listed below.

- The Applicant defined:
 - Basic Project design features, including size of building features, parking spaces, number of units, landscaping, etc.;
 - > Low VOC paints will be used in compliance with SCAQMD rules;
 - During construction, any exposed soil and unpaved access roads will be watered a minimum of three times a day, as required by the SCAQMD;
 - Paved roads outside access points to the parcel will be swept daily during the construction, site preparation, and grading phases to control track-out; and
 - > The Control Building will meet the 2022 Title 24 Building Envelope Energy Efficiency Standards; and

- CalEEMod defaults were used for:
 - Construction equipment load factors;
 - Fleet average age;
 - Architectural coating areas; and
 - > Average vehicle trip distances.

3.0 AIR QUALITY AND GREENHOUSE GAS IMPACTS ANALYSES

In order to evaluate the potential for air quality and GHG impacts from a proposed project, quantitative significance criteria established by the local air quality agency, such as the SCAQMD, may be relied upon to make significance determinations based on mass emissions of criteria pollutants and GHGs, as presented in this report. As shown below, approval of the Project would not result in any significant effects relating to air quality or GHGs.

3.1 CEQA Thresholds of Significance

3.1.1 Criteria Pollutants, Toxic Air Contaminants, and Odors

The Air Quality section of Appendix G of the CEQA Guidelines (Environmental Checklist Form) contains four air quality significance criteria. Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

- a) Conflict with or obstruct implementation of the applicable air quality plan?
- b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?
- c) Expose sensitive receptors to substantial pollutant concentrations?
- d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

The SCAQMD air quality significance thresholds for construction and operation to evaluate local and regional impacts are presented in Table 3-1.

3.1.2 Greenhouse Gases

The Greenhouse Gas Emissions section of Appendix G of the CEQA Guidelines contains two GHG significance criteria. Would the project:

- a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?
- b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

The SCAQMD CEQA threshold of significance for GHGs for industrial facilities is 10,000 MT per year CO₂e (Table 3-1). This threshold accounts for operational emissions as well

as emissions generated during construction amortized over a 30-year projected project lifetime.

Pollutant	Project Construction (lbs/day) Project Operation (l					
ROG (VOC)	75	55				
NO _x	100	55				
СО	550	550				
SO _x	150	150				
\mathbf{PM}_{10}	150	150				
PM _{2.5}	55	55				
24-hour PM _{2.5} Increment	$10.4 \ \mu g/m^3$	$2.5 \ \mu g/m^3$				
24-hour PM ₁₀ Increment	$10.4 \ \mu g/m^3$	$2.5 \ \mu g/m^3$				
Annual PM ₁₀ Increment	$1.0 \ \mu g/m^3 \ ann$	$1.0 \ \mu g/m^3$ annual average				
1-hour NO ₂ Increment	0.18 ppm (state)					
Annual NO ₂ Increment	0.03 ppm (state) & 0.0534 ppm (federal)					
1-hour SO ₂ Increment	0.25 ppm (state) and 0.075 ppm (federal – 99 th percentile)					
24-hour SO ₂ Increment	0.04 ppm (state)					
24-hour Sulfate Increment	$25 \mu g/m^3$ (state)					
1-hour CO Increment	20 ppm (state) and 35 ppm (federal)					
8-hour CO Increment	9.0 ppm (state/federal)					
Toxic Air Contaminants	Maximum Incremental Cancer Risk ≥10 in one million					
(including carcinogens and	Cancer Burden >0.5 excess cancer cases (in areas ≥ 1 in one million)					
non-carcinogens)	Chronic and Acute Hazard Index ≥1.0 (project increment)					
Odor	Project creates an odor nuisance pursuant to Rule 402					
GHGa	10,000 MT/yr CO ₂ e for industrial facilities					
UNUS	3,000 MT/yr CO ₂ e for land use projects (draft proposal)					

Table 3-1: SCAQMD CEQA Thresholds of Significance

Source: SCAQMD 2023, 2008b.

3.2 **Project Emissions Estimation**

The land use construction and operation analyses were performed using CalEEMod version 2022.1.1.28, the official statewide land use computer model designed to provide a uniform platform for estimating potential criteria pollutant and GHG emissions associated with both construction and operations of land use projects under the California Environmental Quality Act (CEQA). The model quantifies direct emissions from construction and operations (including vehicle use), as well as indirect emissions, such as GHG emissions from energy use, solid waste disposal, vegetation planting and/or removal, and water use. The mobile source emission factors used in the model – published by the California Air Resources Board (CARB) – include the Pavley standards and Low Carbon Fuel standards. The model also identifies Project design features, regulatory measures, and control measures to reduce criteria pollutant and GHG emissions along with calculating the benefits achieved from the selected measures. CalEEMod was developed by the California Air Pollution Control Officers Association (CAPCOA) in collaboration with the SCAQMD, the Bay Area Air Quality Management District (BAAQMD), the San Joaquin Valley Air Pollution Control District (SJVAPCD), and other California air districts. Default land use data (e.g., emission factors, trip lengths, meteorology, source inventory, etc.) were provided by the

various California air districts to account for local requirements and conditions. As the official assessment methodology for land use projects in California, CalEEMod is relied upon herein for construction and land use operational (i.e., mobile, energy and water use, etc.) emissions quantification, which forms the basis for the impact analysis.

The stationary equipment that would contribute to the emissions of criteria pollutants, TACs, and GHGs during the operational phase are described in Section 1.2 and include:

- The thermal oxidizer;
- The off-spec flare pilot (the rationale for excluding gas disposed in the flare is described in Section 3.2.2); and
- The generator set ICE.

Emissions from combustion for each of these sources were calculated separately and entered into CalEEMod under the "User Defined" category. These emissions are summarized in Sections 3.5 and 4.3, Tables 3-10, and 4-7 to 4-10. Detailed emission calculations are included Appendix D.

3.2.1 Construction

Based on information received from the Applicant, representative land use data for the proposed Project activities that were used for CalEEMod input are presented in Table 3-2.

Land Use Type	Land Use Subtype	Unit Amount	Size Metric	Lot Acreage (footprint)	Square Feet	Description
Commercial	General Office Building	2.670	1,000 sq. ft.	0.061	2,670	Control Building on site
Industrial	General Heavy Industry	22.045	1,000 sq. ft.	0.51	22,045	Site of Renewable Gas Facility
Parking	Other Asphalt Surfaces	23.240	1,000 sq. ft.	0.53	23,240	Parking Areas (Concrete hardscape and asphalt paving)
Parking	Other Non-Asphalt Surfaces	136.840	1,000 sq. ft.	3.14	136,840	Graded Non-Asphalt Areas
Linear	User Defined Linear	2.40	Mile	_	_	SoCalGas Pipeline
		Pro	oject Size	4.24	184,800	

 Table 3-2: Land Use, RNG Plant, and SoCalGas Pipeline Data for CalEEMod Input

Sources: Applicant 2023, CalEEMod version 2022.1.1.28.

Notes:

Electric utility: Southern California Edison.

Gas utility: Southern California Gas Company.

The Project is expected to require up to approximately 1.5 years of planned work activities (i.e., from mobilization to substantial completion) comprising six construction phases:

- 1. Site preparation;
- 2. Grading;
- 3. Building construction;
- 4. Paving;
- 5. Architectural coating; and
- 6. Trenching and pipeline construction.

Table 3-3: Proposed Project Preliminary Construction Schedule by Phase

Phase #	Phase Name	CalEEMod Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase
1	Earthworks A	Site Preparation	2/12/2025	2/26/2025	5	11
2	Earthworks B	Grading	2/27/2025	5/6/2025	5	49
	Building Construction A		5/7/2025	12/19/2025	5	163
3	Building Construction B	Building Construction	12/23/2025	1/6/2026	5	11
	Building Construction C		1/7/2026	3/4/2026	5	41
4 Paving		Paving	3/5/2026	3/19/2026	5	11
5 Architectural Archite Coating Coat		Architectural Coating	3/20/2026	4/9/2026	5	16
6	SoCalGas Pipeline Construction	Linear, Drainage, Utilities, & Sub- Grade	4/1/2025	7/1/2026	5	327

Table 3-4: Proposed Project Offroad Equipment Used for Construction Phases for	
CalEEMod Input	

Phase #	Phase Name	Equipment Description	Fuel Type	Engine Tier	Qty	Hours/ Day	hp	Load Factor
1	Site	Rubber Tired Dozers	Diesel	Average	3	8	367	0.4
1	Preparation	Tractors/Loaders/Backhoes	Diesel	Average	4	8	84	0.37
		Rubber Tired Dozers	Diesel	Average	2	6	148	0.41
		Tractors/Loaders/Backhoes	Diesel	Average	2	6	84	0.37
		Cement and Mortar Mixers	Diesel	Average	1	6	367	0.4
2	Grading	Sweepers/Scrubbers	Diesel	Average	1	6	36	0.46
		Dumpers/Tenders	Diesel	Average	10	6	16	0.38
		Off-Highway Trucks	Diesel	Average	1	6	376	0.38
		Excavators	Diesel	Average	1	8	36	0.38
		Cranes	Diesel	Average	2	6	367	0.29
	D 111	Forklifts	Diesel	Average	3	8	82	0.2
3	Building	Tractors/Loaders/Backhoes	Diesel	Average	1	6	14	0.74
	construction	Aerial Lifts	Diesel	Average	1	6	84	0.37
		Off-Highway Trucks	Diesel	Average	1	6	46	0.45
		Tractors/Loaders/Backhoes	Diesel	Average	1	8	84	0.37
	Paving	Pavers	Diesel	Average	1	8	81	0.42
4		Paving Equipment	Diesel	Average	2	6	89	0.36
		Rollers	Diesel	Average	2	6	36	0.38
		Cement and Mortar Mixers	Diesel	Average	2	6	10	0.56
5	Architectural Coating Air Compressors		Diesel	Average	1	6	37	0.48
		Bore/Drill rigs	Diesel	Average	1	6	83	0.5
		Excavators	Diesel	Average	1	6	36	0.38
		Rubber Tired Dozers	Diesel	Average	1	6	367	0.4
		Tractors/Loaders/Backhoes	Diesel	Average	1	6	84	0.37
	Trenching	Cranes	Diesel	Average	1	6	367	0.29
6	and Pipeline	Graders	Diesel	Average	1	6	148	0.41
	Construction	Other General Industrial Equipment	Diesel	Average	1	6	35	0.34
		Air Compressors	Diesel	Average	1	6	37	0.48
		Other Construction Equipment	Diesel	Average	1	6	82	0.42

The CalEEMod default distances of 18.5 miles and 10.2 miles were used for the worker and vendor trips, respectively. The CalEEMod default distance of 20 miles was used for the hauling trips Table 3-5 summarizes the construction trip rates and mileages

Phase #	Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
1	Earthworks A	Worker	17.5	18.5	LDA,LDT1,LDT2
2	Eouthuroulia D	Hauling	178.6	20.0	HHDT
2	Earthworks D	Worker	45.0	18.5	LDA,LDT1,LDT2
2	Duilding Construction A	Worker	10.1	18.5	LDA,LDT1,LDT2
5	Building Construction A	Vendor	4.1	10.2	HHDT,MHDT
4	Duilding Construction D	Worker	10.1	18.5	LDA,LDT1,LDT2
4	Building Construction B	Vendor	4.1	10.2	HHDT,MHDT
5	Duilding Construction C	Worker	10.1	18.5	LDA,LDT1,LDT2
5	Building Construction C	Vendor	4.1	10.2	HHDT,MHDT
6	Paving	Worker	20.0	18.5	LDA,LDT1,LDT2
7	Architectural Coating	Worker	6.1	18.5	LDA,LDT1,LDT2
		Hauling	0.4	20.0	HHDT
8	SoCalGas Pipeline	Onsite truck	2.0	20.0	HHDT
	Consuluction	Worker	22.5	18.5	LDA,LDT1,LDT2

 Table 3-5: Proposed Project Construction Traffic Summary

Key: LDA = Light-Duty Automobile; LDT = Light-Duty Truck; MHDT = Medium-Heavy-Duty Truck; HHDT = Heavy-Heavy-Duty Truck

3.2.2 Operation

The term "project operations" refers to the full range of activities that can or may generate criteria pollutant, GHG, and TAC emissions when the project is functioning in its intended use. CalEEMod estimates emissions from the following sources:

- "Mobile" sources, which include emissions from onroad vehicles required to operate the proposed Project;
- "Area" sources, which include emissions from consumer products, architectural coatings, and landscaping equipment;
- "Energy" Sources, which include emissions from building electricity and natural gas usage (non-hearth);
- "Water and Wastewater", which includes the GHG emissions associated with supplying and treating water and wastewater used and generated by the project land uses;
- "Waste", which includes the GHG emissions at landfills associated with disposal of solid waste generated for each project land use subtype; and
- "Refrigerants", which includes the fugitive GHG emissions associated with building air conditioning (A/C) and refrigeration equipment.

Emissions from the abovementioned sources are collectively referred to as "miscellaneous operational sources" in this document.

For industrial projects and some commercial projects, equipment operation and manufacturing processes, i.e., permitted stationary sources, can be of greatest concern from an emissions standpoint. For this Project, the stationary sources of combustion byproducts,

criteria pollutants, and GHGs are the RNG thermal oxidizer, RNG flare, and emergency generator.

This report evaluates only the calculated incremental operational emissions increases from the stationary sources, which include the combustion of pilot fuel (natural gas) and tail gas in the RNG thermal oxidizer, the combustion of pilot fuel (natural gas) in the RNG flare, as well as the combustion of natural gas in the emergency generator. Combustion of gas sent to the RNG flare for disposal during transient conditions, e.g., equipment start-up, is excluded from the evaluation since this is analogous to disposal in the flare station at the FRB Landfill and does not represent a new source of emissions. Emissions from combustion for each of these sources were calculated separately and entered into CalEEMod under the "User Defined" category. Further details regarding the source dimensions, specifications, and a process flow diagram of the project are presented in Appendix B.

Regional CEQA Significance of Criteria Pollutants

3.2.3 Construction

A project's construction phase produces many types of emissions, and generally, particulate matter less than 10 microns in size (PM_{10}) [including particulate matter less than 2.5 microns in size ($PM_{2.5}$)] in fugitive dust and diesel engine exhaust are the pollutants of greatest concern. Construction-related emissions can cause substantial increases in localized concentrations of PM_{10} , as well as affecting PM_{10} compliance with ambient air quality standards on a regional basis. The use of diesel-powered construction equipment emits ozone precursors NO_x and reactive organic gases (ROG), as well as diesel particulate matter (DPM); however, the use of diesel-powered equipment would be minimal. Use of architectural coatings and other materials associated with finishing buildings may also emit ROG and toxic air contaminants (TACs). CEQA significance thresholds address the impacts of construction activity emissions on local and regional air quality. Thresholds are also provided for other potential impacts related to Project construction, such as odors and TACs.

The SCAQMD's approach to CEQA analyses of fugitive dust impacts is to require implementation of effective and comprehensive dust control measures rather than to require detailed quantification of emissions. PM_{10} emitted during construction can vary greatly depending on the level of activity, the specific operations taking place, the equipment being operated, local soils, weather conditions, and other factors, making quantification difficult. Despite this variability in emissions, experience has shown that there are several feasible control measures that can be reasonably implemented to significantly reduce fugitive dust emissions from construction. For larger projects, the SCAQMD has determined that compliance with an approved fugitive dust control plan comprising Best Management Practices (BMPs), primarily through frequent water application, constitutes sufficient control to reduce PM_{10} impacts to a level considered less than significant.

CalEEMod outputs are in Appendix A. It should be noted that although emissions are labeled as "mitigated" in the CalEEMod outputs, these emissions reflect project design features, i.e., required BMPs. For this project, applicable SCAQMD and Planning

Department approved BMPs will be implemented as project design features. This is a standard Condition of Approval and pursuant to CEQA, is not considered mitigation.

Table 3-6 shows the proposed Project's criteria pollutants emissions for construction and evaluates them against SCAQMD significance thresholds.

As shown in Table 3-6, mass emissions of criteria pollutants from construction would be below applicable SCAQMD significance thresholds.

PROJECTED IMPACT: Less Than Significant (LTS)

Criteria Pollutants	Construction Emissions (lbs/day)	Threshold (lbs/day)	Significance
ROG (VOC)	11.1	75	LTS
NO _x	56.8	100	LTS
СО	50.0	550	LTS
SO _x	0.16	150	LTS
Total PM ₁₀	24.9	150	LTS
Total PM _{2.5}	6.5	55	LTS

Table 3-6: Construction Emissions Summary and Significance Evaluation

Sources: SCAQMD 2023, CalEEMod version 2022.1.1.28.

Notes:

lbs/day are winter or summer maxima for planned land use.

Total $PM_{10}/PM_{2.5}$ comprises fugitive dust plus engine exhaust.

3.2.4 Operation

Table 3-7 shows baseline and the proposed Project's criteria pollutants emissions for operations and evaluates the proposed Project's emissions against SCAQMD significance thresholds.

As previously stated, the RNG Plant is designed to process a maximum of 6,000 scfm of raw LFG at the inlet. As such, the Project's baseline is defined as the emissions from disposal of 6,000 scfm of raw LFG in the flare station at the FRB Landfill. These emissions are estimated from the emission factors in the SCAQMD Permit to Construct for Flare I-6, the newest flare at the flare station. This allows for a conservative comparison of emissions from the RNG Plant with baseline emissions, is subject to lower emission standards than the other flares in the flare station at the FRB Landfill.

The operational emissions only include the calculated incremental operational emissions increases from Miscellaneous Operational Sources (i.e., mobile, area, energy sources) as well as the stationary sources (i.e., pilot fuel (natural gas) and tail gas for the thermal oxidizer, pilot fuel for the flare, as well as natural gas for emergency generator usage). The difference ([G]) between the proposed Project ([F]) and baseline emissions ([A]) represent the incremental change in emissions, and these incremental changes are compared to the SCAQMD CEQA significance thresholds ([H]). These emissions represent the peak operating day with the TOU, Flare, and Emergency Engine operating on the same day. This is a conservative estimate because a normal operating day would not involve emergency engine usage, which is limited to maintenance and testing hours only.

As shown in Table 3-7, mass emissions of criteria pollutants from operation are below applicable SCAQMD CEQA significance thresholds. The proposed Project would provide a beneficial use for the LFG generated from the landfill and therefore, would have a less than significant impact.

PROJECTED IMPACT: Less Than Significant (LTS)

Table 3-7: Or	perational E	missions	Summary and	d Signific	cance Evaluation

Emissio	Criteria Pollutant Emissions on Peak Operating Day ⁸ (lb/day)						
		VOC	NO _x	СО	SO _x ⁹	PM ₁₀ ¹⁰	PM _{2.5} ¹⁰
[A]	Baseline Existing LFG Flare Emissions ¹ (6,000 scfm LFG)	25.92	108.00	259.20	124.01	52.70	52.70
[B]	Proposed TOU ²	4.34	25.29	57.81	124.26	5.16	5.16
[C]	Proposed Flare ³	0.01	0.14	0.14	0.00	0.01	0.01
[D]	Proposed Engine ⁴	0.11	0.70	1.17	0.00	0.07	0.07
[E]	Proposed Miscellaneous Operational Sources ⁵	0.75	0.32	1.59	0.00	0.12	0.05
$[\mathbf{F}] = [\mathbf{B} + \mathbf{C} + \mathbf{D} + \mathbf{E}]$	Proposed Project ⁶	5.22	26.46	60.72	124.27	5.37	5.29
[G] = [F] - [A]	Proposed Project - Baseline Existing LFG Flare Emissions	-20.70	-81.54	-198.48	0.25	-47.34	-47.34
[H]	SCAQMD Mass Daily Thresholds for Operation ⁷	55	55	550	150	150	150
[G]>[H]	Significance	LTS	LTS	LTS	LTS	LTS	LTS

¹ Baseline is calculated as the emissions from flaring 6,000 scfm LFG (~180 mmBtu/hr) for 24 hours at the Flare I-6 emission factors. ² Proposed TOU: 2,315 scfm Tail Gas 1 (~6.4 mmBtu/hr) + 885 scfm Tail Gas 2 (~6.1 mmBtu/hr) + 280 scfm Supplemental Fuel (~17.6 mmBtu/hr), 24 hours. <u>Note</u>: RNG Plant inlet compression removes approximately 400 scfm moisture from the incoming LFG. The RNG Plant is projected to generate on the order of 2,400 scfm RNG. Tail Gas 1 + Tail Gas 2 + RNG = 2,315 scfm + 885 scfm + 2,400 scfm = 5,600 scfm. RNG Plant Inlet – Moisture Removal = 6,000 scfm – 400 scfm = 5,600 scfm. Further information regarding tail gas compositions and fuel heat ratings are provided in Appendices B and C.

³ Proposed Flare: ~1.6 scfm Supplemental Fuel (0.1 mmBtu/hr), 24 hours.

⁴ Proposed Engine: Engine is natural gas fired and used for maintenance and testing.

⁵ Proposed Miscellaneous Operational Sources: Includes Mobile, Area, and Energy sources from CalEEMod.

⁶ Proposed Project: Proposed TOU + Proposed Flare + Proposed Engine + Proposed Miscellaneous Operational Sources.

⁷ Source: SCAQMD (2023).

⁸ Peak operating day with emergency engine usage is shown here. A typical day would not involve emergency generator usage, which is limited to maintenance and testing hours only.

⁹ SOx EF is based on daily/hourly BACT basis (85 ppm or 14.354 lb/mmscf). Proposed TOU SOx emissions include 100% of the Landfill Tail Gas SOx emissions + SOx from supplemental fuel. Proposed Flare SOx emissions include SOx from supplemental fuel.

¹⁰ Total PM₁₀ / PM_{2.5} comprises fugitive dust plus engine exhaust.

3.3 Localized Significance Threshold Analysis

The SCAQMD's LST methodology (SCAQMD 2008a) was used to analyze the neighborhood scale impacts of NO_x , carbon monoxide (CO), PM_{10} , and $PM_{2.5}$ associated with Project-specific mass emissions. Introduced in 2003, the LST methodology was revised in 2008 to include the $PM_{2.5}$ significance threshold methodology and update the LST mass rate lookup tables for the new 1-hour nitrogen dioxide (NO₂) standard.

For determining localized air quality impacts from small projects in a defined geographic source-receptor area (SRA), the LST methodology provides mass emission rate lookup tables for 1-acre, 2-acre, and 5-acre parcels by SRA. The tabulated LSTs represent the maximum mass emissions from a project that will not cause or contribute to an exceedance of California or national ambient air quality standards (CAAQS or NAAQS) for the above pollutants and were developed based on ambient concentrations of these pollutants for each SRA in the South Coast Air Basin (SCAQMD 2008a).

For most land use projects, the highest daily emission rates occur during the site preparation and grading phases of construction; where applicable, these maximum daily emissions were used in the LST analysis.

The proposed Project site is 4.24 acres in SRA Zone 19 – Saddleback Valley. As a conservative estimate, the 2-acre screening lookup tables were used to evaluate NO_x , CO, PM_{10} , and $PM_{2.5}$ impacts on nearby receptors. The nearest receptor is approximately 1,300 meters (4,200 feet) away from the proposed RNG facility. Therefore, the impact evaluation was performed using the closest distance within SCAQMD LST tables of 500 meters for construction (SCAQMD 2008a).

3.3.1 Construction

The LST results provided in Table 3-8 show that on-site emissions from construction would meet the LST passing criteria at the nearest receptors. Thus, impacts would be less than significant.

PROJECTED IMPACT: Less Than Significant (LTS)

Criteria Pollutants	Construction Emissions (lbs/day)	Threshold (lbs/day)	Percent of Threshold	Result
NO _x	56.8	233	24.4%	Pass
СО	50.0	8,454	0.6%	Pass
PM_{10}	24.9	129	19.3%	Pass
PM _{2.5}	6.5	74	8.7%	Pass

 Table 3-8: Construction Localized Significance Threshold Evaluation

Sources: SCAQMD 2008a, CalEEMod version 2022.1.1.28.

Notes:

SRA: Zone 19 – Saddleback Valley. 2-acre area, 500 meters to receptor.

3.3.2 Operation

An AQIA was conducted to evaluate localized air quality impacts from operational emissions and is discussed in Section 4.3.1.

3.4 Greenhouse Gas Emissions from Construction and Operation

GHGs – primarily CO₂, methane (CH₄), and nitrous oxide (N₂O), collectively reported as carbon dioxide equivalents (CO₂e) – are directly emitted from stationary source combustion of natural gas in equipment such as water heaters, boilers, process heaters, and furnaces. GHGs are also emitted from mobile sources, such as on-road vehicles and off-road construction equipment, burning fuels such as gasoline, diesel, biodiesel, propane, or natural gas (compressed or liquefied). Indirect GHG emissions result from electric power generated elsewhere (i.e., power plants) used to operate process equipment, lighting, and utilities at a facility. Also, included in GHG quantification is electric power used to pump the water supply (e.g., aqueducts, wells, pipelines) and disposal and decomposition of municipal waste in landfills (CARB 2022a).

California's Building Energy Efficiency Standards are updated on an approximately 3-year cycle. The 2022 standards improved upon the 2019 standards for new construction of, and additions and alterations to, residential, commercial, and industrial buildings. The 2022 standards went into effect on January 1, 2023 (CEC 2022).

Since the Title 24 standards require energy conservation features in new construction [e.g., highefficiency lighting; high-efficiency heating, ventilation, and air conditioning (HVAC) systems; thermal insulation; double-glazed windows; water conserving plumbing fixtures; etc.], they indirectly regulate and reduce GHG emissions.

Using CalEEMod, direct on-site and off-site GHG emissions were estimated for construction and operation, and indirect off-site GHG emissions were estimated to account for electric power used by the proposed Project, water conveyance, and solid waste disposal. CalEEMod also quantifies common refrigerant GHGs (abbreviated as "R" in the model output) used in air conditioning and refrigeration equipment, some of which are hydrofluorocarbons (HFCs).

The SCAQMD officially adopted an industrial facility mass emissions threshold of 10,000 metric tons (MT) CO₂e per year (SCAQMD 2023).

The City of Irvine adopted its Climate Action and Adaptation Plan (CAAP) in June 2021. The measures identified in the CAAP represent the City's actions to achieve the GHG reduction targets of Assembly Bill (AB) 32 for target year 2030. Local measures included in the CAAP include:

- An energy measure that directs the City to create an energy action plan to reduce energy consumption citywide;
- Land use and transportation measures that encourage alternative modes of transportation (walking, biking, and transit), reduce motor vehicle use by allowing a reduction in parking supply, voluntary transportation demand management to reduce vehicle miles traveled, and land use strategies that improve jobs-housing balance (increased density and mixed-use); and
- Solid waste measures that reduce landfilled solid waste in the City.

Table 3-9 shows a breakdown of the Project construction GHG emissions over the approximately 1.5 years construction period. Table 3-10 shows a breakdown of the Project operation GHG emissions. All CO₂ derived from LFG is considered biogenic (i.e., are part of the natural biological/physical carbon cycle) and does not result in a net increase in atmospheric CO₂. All CH₄ and N₂O emissions are anthropogenic and result in net increases in atmospheric GHG. Thus, for the tail gas streams, the combustion byproducts of CH₄ and N₂O are included in this analysis

but biogenic CO_2 , both as a component of the tail gas streams and formed from combustion, are excluded.¹ Details of the analysis are shown in Appendix D.

Table 3-11 combines the emissions from Table 3-9 and Table 3-10 for comparison to baseline emissions. Baseline emissions include CH_4 and N_2O resulting from combustion of 6,000 scfm LFG. As shown in Table 3-11, incremental GHG emissions from operations are below the applicable SCAQMD CEQA significance threshold. The Project is expected to have a less than significant impact.

PROJECTED IMPACT: Less Than Significant (LTS)

Year	CO ₂	CH ₄	N ₂ O	R	CO ₂ e
	MT/yr	MT/yr	MT/yr	MT/yr	MT/yr
2025	940.73	0.05	0.06	0.36	959
2026	233.97	0.01	0.00	0.04	236
Total	1,174.70	0.06	0.06	0.40	1,194

Table 3-9: Construction Greenhouse Gas Emissions Summary by Year

Source: CalEEMod version 2022.1.1.28

Table 3-10. Operation Greenhouse Gas Emissions Summary by Sector/Equipmen	Table 3-10	: Operation	n Greenhouse	e Gas Emission	s Summary by	Sector/Equipment
---	------------	-------------	--------------	----------------	--------------	------------------

Veer	\mathbf{CO}_2	CH ₄	N ₂ O	R	CO ₂ e
rear	MT/yr	MT/yr	MT/yr	MT/yr	MT/yr
Mobile	17.79	0.00	0.001	0.03	18
Area	0.50	0.00	0.000	0.00	1
Energy	116.17	0.01	0.001	0.00	117
Water	10.92	0.18	0.004	0.00	17
Waste	2.66	0.27	0.000	0.00	9
Refrigeration	0.00	0.00	0.000	0.95	1
Thermal Oxidizer (TOU)	8,195.16	0.26	0.026	0.00	8,210
Off-Spec Flare	46.46	0.02	0.026	0.00	55
Genset with ICE	4.61	0.002	0.0026	0.00	5
Total	8,394.3	0.74	0.06	0.98	8,432

Source: CalEEMod version 2022.1.1.28

¹ EPA has identified biogenic sources (that is, sources not related to energy production and consumption) as those with GHG emissions that are generated during the decomposition of biologically based material, such as landfills, manure management, wastewater treatment, livestock respiration, fermentation processes, and combustion of biogas not resulting in energy production (for example, flaring of collected LFG). Some climate models do not include biogenic CO₂ emissions from the decomposition of organic material, because decomposition is part of the natural carbon cycle. Biogenic GHG emissions need not be considered part of the project's indirect and direct GHG emissions if it can be demonstrated that they are part of the natural biological/physical carbon cycle and do not result in a net increase of GHG emission. (AEP 2016)

GHGs	Baseline (MT/yr) ¹	Construction (MT/yr)	Operation (MT/yr) ¹	Total ² (MT/yr)	Expected Net Change in Emissions (MT/yr)	Threshold (MT/yr)	Significance
Anthropogenic CO ₂	0	1,174.70	8,394.3	8,433	8,433	—	_
CH ₄	6	0.06	0.74	0.74	-4.80	_	-
N ₂ O	1	0.06	0.06	0.06	-1.03	_	-
R	0	0.4	0.98	0.99	0.99	_	—
Anthropogenic Total (as CO ₂ e)	464	1,194	8,432	8,472	8,007	10,000	LTS

Table 3-11: Greenhouse Gas Emissions Summary	and Significance Evaluation
--	-----------------------------

Sources: SCAQMD 2008b, Yorke 2024 (Appendix D), CalEEMod version 2022.1.1.28.

Notes:

¹All CO₂ derived from LFG is considered biogenic and does not result in a net increase in atmospheric CO₂. All CH₄ and N₂O emissions are anthropogenic and result in net increases in atmospheric GHG. Thus, the combustion byproducts of CH₄ and N₂O are included in this analysis. ²Total CO₂e emissions comprises annual operational emissions plus construction emissions amortized over 30 years.

4.0 MODELING AND HEALTH RISK ASSESSMENT

CEQA requires that the environmental impacts of a proposed project be identified and assessed. If these impacts are found to be significant, the impacts must be mitigated to the extent feasible.

The SCAQMD has developed CEQA thresholds for determination of significance and determination if AQIA modeling is required (SCAQMD 2023); these criteria are described further in Section 5. Per SCAQMD Final Localized Significance Threshold Methodology, LST analysis is not applicable for project sites where emissions are distinctly non-uniform across the site (SCAQMD, 2008a); therefore, an AQIA was conducted for operations.

The modeling analyses discussed in this section include criteria pollutant AQIA modeling with respect to the NAAQS/CAAQS/SCAQMD thresholds for operational activities and two separate HRAs for construction and operations.

The methodology used to develop the AQIA and HRAs is described below and based on SCAQMD guidance documents and policies, in particular, "South Coast AQMD Modeling Guidance for AERMOD" (SCAQMD 2016). The AERMOD dispersion model was used as the basis for both the AQIA and HRAs.

4.1 Dispersion Modeling

4.1.1 Air Dispersion Model

The air dispersion model used for the AQIA/HRAs is the AMS/EPA Regulatory Model (AERMOD). AERMOD is a steady-state plume dispersion model that incorporates air dispersion calculations based on planetary boundary layer turbulence structure and scaling concepts. AERMOD includes the treatment of both surface and elevated sources and simple and complex terrain. AERMOD, like most dispersion models, uses mathematical algorithms to characterize the atmospheric processes that disperse pollutants emitted by a source. Using emission rates, release parameters, terrain characteristics, and

meteorological inputs, AERMOD calculates downwind pollutant concentrations at specified receptor locations.

The Lakes Environmental Software Implementation/user interface, AERMOD ViewTM, version 12.0.0, was used for this Project. This version of AERMOD ViewTM implements version 23132 of AERMOD.

4.1.2 Modeling Options

AERMOD ViewTM allows the user to select from a variety of dispersion options. For this project, "Regulatory Default" options were used.

4.1.3 Meteorological Data

Five years of AERMOD-ready preprocessed meteorological data files for 2012-2016 were obtained from the SCAQMD for the Mission Viejo (MSV) meteorological station (SCAQMD 2016).

4.1.4 Terrain Data

Digital elevation data were imported into AERMOD and elevations were assigned to receptors, buildings, and emissions sources, as necessary. Future on-site buildings have elevations set to their post-construction elevations. National Elevation Dataset (NED) elevation data were obtained through the AERMOD View[™] WebGIS import feature. The dataset has a resolution of approximately 10 meters. Per SCAQMD modeling guidance, since some receptors are lower and some receptors are higher than the base elevation of the sources, AERMOD was run twice– once using the default elevated option and the second time using the non-default (flat) option. The maximum ground-level concentration from both runs, whichever is greater, is reported.

4.1.5 Urban/Rural Dispersion Coefficient

Consistent with SCAQMD guidance, the model uses urban dispersion coefficients and the population of the County where the Project is located. The Project is located in Orange County, so the model used a population of 3,010,232.

4.1.6 Receptor Locations

Grid receptors representing nearby residents, sensitive receptors, and off-site workers were located:

- Every 100 meters along the facility boundary;
- At 50-meter spacing from the center of source locations out to 1,000 meters; and
- At 250-meter spacing between 1,000 meters and 5,000 meters from the center of source locations.

For the HRA, additional receptor grids were placed in residentially dense areas to ensure worst-case concentrations were captured.

For the construction HRA, since AERMOD does not correctly predict concentrations for receptors within volume source exclusion zones, receptors located within the RNG Plant boundary or within the truck volume source exclusion zone were excluded.

Figure 4-1 shows the facility layout, buildings, and receptor locations.

Notes:

RNG Plant buildings shown in blue. Bowerman landfill boundary shown in red. Receptor locations shown in light green.

4.1.7 Buildings

For the operational HRA and AQIA, the modeling included existing and future on-site and off-site structures expected to have the potential to result in downwash effects. Building downwash effects were assessed for all emissions sources using the Building Profile Input Program for PRIME (BPIPPRM).

Building locations are shown in Figure 4-1. Building locations and dimensions are included with the AERMOD Project files.

Buildings were not included in the construction HRA since the modeling solely involves volume and line-volume sources, neither of which are affected by building downwash.

4.1.8 Source Information and Release Parameters

For the HRAs, AERMOD was run with a unit emission rate [1 gram per second (g/s)] for each source to calculate the concentration of TACs from each source per unit emission rate, known as X/Q (Chi/Q), for 1-hour and period (annual) averaging time options per receptor. The modeled X/Q concentration was calculated for each source, at each receptor, for each averaging time for input into the Hotspots Analysis and Reporting Program, version 2 (HARP2).

4.1.8.1 Construction

HRA modeling was conducted for the DPM exhaust from the construction equipment and delivery trucks. The construction HRA encompassed all stages of construction spanning the 1-year period.

Source release parameters for each source are described in detail below; the sources are shown in Figure 4-2. DPM emissions from the RNG Plant construction were modeled as a 47,961 square feet surface-based volume source in the middle of the site, corresponding to the total on-site land use in Table 3-1. The pipeline construction trucks were parameterized in AERMOD as a 3,917-meter (2.43-mile) line-volume source. The path was set based on the proposed pipeline trenching pathway. The line-volume source represents a series of separated volume sources with parameters based on truck dimensions and the algorithms in the United States Environmental Protection Agency's (U.S. EPA's) Haul Road Workgroup for volume sources (EPA 2012).

Source ID	Source Type	Release Height (m)	Length of Side (m)	Initial Lateral Dimension (m)	Initial Vertical Dimension (m)
RNG_FAC	Volume	2.5	131.06	30.48	1.16

Table 4-1: Source Parameters – RNG Facility Construction

Fable 4-2: Source Parameters	- SoCalGas	Pipeline	Construction
-------------------------------------	------------	----------	--------------

Source ID	Source Type	Plume Height (m)	Plume Height Plume Width (m) (m)		Total Length (m)
PIPELINE	Line Volume	5.1	9.0	2.55	3917

Notes:

Volume source for the RNG Plant construction shown in red. Truck travel line volume source shown in blue.

4.1.8.2 Operations

An AQIA and HRA for the proposed Project were prepared to evaluate criteria pollutant levels and health risk impacts due to operational emissions. The equipment and operations that would contribute to the emissions of criteria pollutants and TACs from the combustion equipment, and thus were included in the AQIA/HRA, are:

- The thermal oxidizer unit that uses tail gas from the landfill and natural gas as the supplemental fuel;
- The off-spec flare pilot that uses natural gas; and
- The generator set ICE that uses natural gas.

Figure 4-3 shows the location of each source.

Notes:

Point sources for flare, thermal oxidizer unit, and generator set with ICE shown in red. Proposed Project building layout shown in blue.

All stationary sources were modeled as point sources, including the flare, thermal oxidizer unit, and generator set with ICE. The emissions for the point sources were based on the methodology discussed in Section 3.2.2, and further shown in Appendix D.

The release parameters utilized for each source are shown in Table 4-3.

For the AQIA, emissions for each criteria pollutant and source were used in AERMOD. Maximum hourly, daily, and annual emissions were used in modeling all hourly, 24-hour, and annual averaging periods, respectively. Maximum 8-hour emissions were used in modeling the 8-hour averaging period for CO.

For the HRAs, AERMOD was run with a unit emission rate for each source for 1-hour and period averaging times.

Source ID	Source Description	UTM Easting (m)	UTM Northing (m)	Release Height (ft)	Exit Temperature (°F)	Inside Diameter (ft)	Exhaust Flow (scfm)	Exit Velocity (m/s)
FLARE	Off-Spec Flare	434,255.01	3,730,882.74	50	1,018	11.77	150,000	7.003
ICE	CAT DG150 Backup Generator ICE	434,246.91	3,730,967.73	6.15	1,304	0.4167	1,177	43.852
TOU	PEI Thermal Oxidizer – Pilot Gas	434,255.52	3,730,894.15	50	1,000	5.6	39,000	8.044

 Table 4-3: Source Parameters – RNG Plant Operation

4.2 Construction – Health Risk Assessment

The principal TAC emitted during Project construction would be DPM from diesel-powered equipment. DPM emissions were derived from the CalEEMod runs in Attachment A, where DPM is assumed to be the same amount as the exhaust PM_{10} emissions.

Although the total Project construction period is expected to occur over a span of approximately 1.5 years, the majority of DPM-emitting construction phases overlap during a 1-year period. Thus, a conservative approach was used, where the total DPM emissions from the RNG Plant and SoCalGas pipeline construction over the approximately 1.5-year period were assumed to simultaneously emit over a 1-year period. The DPM emission rates for the RNG Plant and SoCalGas pipeline construction are shown in Table 4-4. Annual emission rates were calculated by conservatively assuming that the total DPM exhaust emissions during construction occur over a single year. Hourly emission rates were calculated by dividing the total DPM emissions by the number of working days, divided by 24 hr (e.g, 151 lbs / 302 days / 24 hr / day = 0.0208 lbs/hr).

Table 4-4: DPM Emissions for RNG Plant and SoCalGas Pipeline Construction

Construction Phase	DPM (PM ₁₀) Exhaust Emissions During Construction (lbs)	Working Days	Annual Emission Rate ¹ (lbs/year)	Hourly Emission Rate (lbs/hour)
RNG Facility Construction	151	302	151	0.0208
SoCalGas Pipeline Construction	234	327	234	0.0298

1) To be conservative, it was assumed that the total DPM exhaust emissions during construction occur over a single year.

4.2.1 Health Risk Assessment Calculations

This HRA was conducted in accordance with SCAQMD Risk Assessment Procedures (SCAQMD 2017) and the Office of Environmental Health Hazard Assessment (OEHHA) Air Toxics Hot Spots Program Guidance Manual (OEHHA 2015).

The construction HRA health risk calculations were performed using the HARP2 Air Dispersion Modeling and Risk Tool (ADMRT, version 22118, CARB 2022b). The X/Q 1-hour and annual values that were determined for each source using AERMOD were imported into HARP2 and used in conjunction with hourly and annual emissions to determine the ground-level concentration (GLC) of DPM to an individual. The GLCs were then used to estimate the long-term cancer health risk to an individual. Since DPM is the only TAC in this HRA, and only carcinogenic and chronic toxicity values are documented for DPM, only cancer and chronic risk assessments were conducted.

A description of the health risk indices and associated calculations conducted in HARP2 is provided below. Table 4-5 provides a listing of the HARP2 options that were selected for the analysis.

4.2.2 Cancer Risk

Cancer risk is the estimated probability of a maximally exposed individual potentially contracting cancer as a result of exposure to TACs over a period of time. Cancer risk at all receptors was estimated over a 1-year period, corresponding to the 1-year construction period shown in Table 4-4. This provides a conservative health risk estimate since the total DPM emissions are assumed to be emitted over a single year, which provides the largest overlap with the highest sensitive specific age group weighting factors (3rd trimester and 0-2 years).

Residential receptor cancer risk estimates were calculated using CARB's Risk Management Policy (RMP), "RMP Using the Derived Method," and off-site workplace cancer risk estimates used the "OEHHA Derived" calculation method. The RMP uses high-end breathing rates (95th percentile) for children from the third trimester through age 2 and 80th percentile breathing rates for all other ages for residential exposures (CARB 2015). The "OEHHA Derived" method uses high-end exposure parameters for the top two exposure pathways and mean exposure parameters for the remaining pathways for cancer risk estimates. The "RMP Using the Derived Method" combines the two approaches.

4.2.3 Chronic Hazard Index

DPM also has non-cancer health risk due to long-term (chronic) exposure. The Chronic Hazard Index (HIC) is the sum of the individual substance HICs for all TACs affecting the same target organ system. Chronic risk was calculated using the "OEHHA Derived" Method at all receptors for an annual exposure duration. The same exposure pathways, as outlined in Table 4-5, were used in the HIC assessment.

4.2.4 Acute Hazard Risk

Some TACs may have non-cancer health risk due to short-term (acute) exposures. Acute Hazard Index (HIA) is the sum of the individual substance HIAs for all TACs affecting the same target organ system. Since DPM does not have an acute reference exposure level (REL), no acute risks were estimated for the construction scenario.

Parameter	Assumptions		Comments		
Multi-Pathway	_				-
Inhalation	Res	×	Work	×	-
Soil	Res	X	Work	×	_
Dermal	Res	×	Work	×	"Warm" climate
Mother's Milk	Res	×	Work		—
Drinking Water	Res		Work		—
Fish	Res		Work		—
Homegrown Produce	Res	×	Work		Default for "Households that Garden"
Beef/Dairy	Res		Work		-
Pigs, Chickens, and/or Eggs	Res		Work		
Deposition Velocity		0.02	2 m/s		
Residential Cancer Risk Ass	sumptior	18			-
Exposure Duration	1 year		Corresponding to overlapped 1-year construction period		
Fraction of Time at Home	3 rd Trimester to 16 years: Off 16 years to 30 years: On			_	
Analysis Option	RMP U	sing the	Derived Me	thod	—
Worker Cancer Risk Assun	nptions				
Exposure Duration		1 y	/ear		Corresponding to overlapped 1-year construction period
Analysis Option	OEH	HHA De	rived Metho	d	_
Inhalation Rate Basis	8-hour	breathin inte	g rates, mod nsity	erate	_
Worker Adjustment Factor		Yes	, 5.6		Construction will take place 5 days/week, 6 hours/day
Residential and Worker No	n-Cance	r Risk A	ssumptions		-
Analysis Option	OEH	HHA De	rived Metho	d	—
Inhalation Rate Basis	Long- Mod	term 24 lerate 8-	-hour (reside hour (worke	ent) r)	_
Worker Adjustment Factor			1		-

Table 4-5: Construction HRA – HARP2 Model Options

4.2.5 Construction HRA Results

The construction HRA results predict that all health risk factors would be less than the CEQA significance thresholds at all actual receptors. The results of the HRA are summarized in Table 4-6.

The maximally exposed individual resident (MEIR) was predicted to be at the end of the pipeline construction line within the Portola Springs community, and the maximally exposed individual worker (MEIW) was predicted to be Jimni Systems Inc., located west of State Route 133. Figure 4-4 shows the locations of the MEIR and MEIW receptors. All

health risk values were predicted to be less than the CEQA significance thresholds and are shown in Table 4-6.

Figure 4-4: Maximally Exposed Receptors – Construction HRA Cancer Risk

Notes:

RNG Plant shown in red. Truck travel line volume source shown in blue. MEIR shown in light green circle. MEIW shown in orange circle.

Risk ¹	Receptor	Receptor	UTM Easting Coordinate (m)	UTM Northing Coordinate (m)	Estimated Risk Value	CEQA Threshold ²	Health Risk Significant?
Compon	MEIR	2515	431,461	3,730,680	7.03	10 in one	No
Cancer	MEIW	2565	433,119	3,731,289	0.26	million	No
Chasais	MEIR	2515	431,461	3,730,680	0.0079	1.0	No
Chronic	MEIW	2565	433,119	3,731,289	0.0036	1.0	No

Table 4-6: Summary of Construction HRA Results

1. Maximum risk values from flat terrain AERMOD run.

2. Source: SCAQMD 2023.

4.3 Operation

An AQIA and HRA for the proposed Project were prepared to evaluate criteria pollutant level and health risk impacts due to operational emissions. The equipment and operations that would contribute to the emissions of criteria pollutants and TACs from the combustion equipment, and thus be included in the AQIA/HRA, are:

- The thermal oxidizer unit that uses tail gas from the landfill and natural gas as the supplemental fuel;
- The off-spec flare pilot that uses natural gas; and
- The generator set ICE that uses natural gas.

Criteria pollutant and TAC emissions from operational activity for each of the sources are shown in Tables 4-7 to 4-9 and Table 4-10, respectively. Emission calculation methodology is shown in Appendix D.

Pollutant	1-Hour Averaging Period (lb/hr)	8-Hour Averaging Period (lb/8-hr)	24-Hour Averaging Period (lb/24-hr)	Annual Averaging Period (lb/yr)
NO ₂	1.054E+00			9.23E+03
SO_2	5.177E+00		1.243E+02	3.20E+04
СО	2.409E+00	1.927E+01		
PM ₁₀			5.162E+00	1.88E+03
PM _{2.5}			5.162E+00	1.88E+03

Table 4-7: Criteria Pollutant Emissions from Operations – Thermal Oxidizer Unit

Table 4-8: Cr	riteria Pollutant	Emissions from	Operations –	Off-Spec Flare
---------------	-------------------	-----------------------	---------------------	-----------------------

Pollutant	1-Hour Averaging Period (lb/hr)	8-Hour Averaging Period (lb/8-hr)	24-Hour Averaging Period (lb/24-hr)	Annual Averaging Period (lb/yr)
NO ₂	6.000E-03			5.256E+01
SO_2	5.714E-05		1.371E-03	5.006E-01
СО	6.000E-03	4.800E-02		
PM ₁₀			1.394E-02	5.089E+00
PM _{2.5}			1.394E-02	5.089E+00

Table 4-9: Criteria Pollutant Emissions from Operations – Generator Set with ICE

Pollutant	1-Hour Averaging Period (lb/hr)	8-Hour Averaging Period (lb/8-hr)	24-Hour Averaging Period (lb/24-hr)	Annual Averaging Period (lb/yr)
NO ₂	1.672E-01	—	—	8.359E+00
SO_2	9.929E-04	—	4.170E-03	4.965E-02
СО	2.786E-01	1.170E+00	—	—
PM_{10}	_	_	6.950E-02	8.274E-01
PM _{2.5}	—	—	6.950E-02	8.274E-01

Table 4-10: TAC Emissions from Operations

	CAS	Thermal Oxidizer Unit		Off-Sj	pec Flare	Generator Set with ICE	
Pollutant	No.	Annual Emissions (lb/year)	Maximum Hourly Emissions (lb/hr)	Annual Emissions (lb/year)	Maximum Hourly Emissions (lb/hr)	Annual Emissions (lb/year)	Maximum Hourly Emissions (lb/hr)
1,3-Butadiene	106990	_	_	—	—	5.59E-02	1.12E-03
1,1-Dichloroethene	75354	2.13E-01	2.44E-05	_	—	_	_
1,1-Dichloroethane	75343	1.94E-01	2.21E-05	—	—	—	—
1,2-Dichloroethane	107062	2.31E+00	2.64E-04	—	—	9.52E-04	1.90E-05
1,1,1- Trichloroethane	71556	1.45E-01	1.65E-05	_	_	_	_
1,1,2- Trichloroethane	79005	_	_	_	_	1.29E-03	2.58E-05
1,1,2,2- Tetrachloroethane	79345	_	_	_	_	2.13E-03	4.27E-05
Acetaldehyde	75070	7.79E-01	8.89E-05	3.59E-02	4.10E-06	2.36E-01	4.72E-03
Acrolein	107028	6.78E-01	7.74E-05	8.34E-03	9.52E-07	2.22E-01	4.44E-03
Ammonia	7664417	8.04E+02	9.18E-02	—	-	2.65E-01	5.30E-03
Benzene	71432	1.99E+01	2.27E-03	1.33E-01	1.51E-05	1.33E-01	2.66E-03
Carbon Tetrachloride	56235	_	_	_	_	1.50E-03	3.00E-05
Chlorobenzene	108907	5.83E+01	6.65E-03		_	_	_
Chloroform	67663	6.13E-02	7.00E-06	_	_	1.16E-03	2.32E-05
Chrysene	218019	_	_	_	_	_	_

Air Quality, GHG, HRA, AQIA, and LST Study for a Renewable Natural Gas Facility Bowerman Power LFG, LLC

	CAS	Thermal Oxidizer Unit		Off-S _l	pec Flare	Generator Set with ICE		
Pollutant	No.	Annual Emissions (lb/year)	Maximum Hourly Emissions (lb/hr)	Annual Emissions (lb/year)	Maximum Hourly Emissions (lb/hr)	Annual Emissions (lb/year)	Maximum Hourly Emissions (lb/hr)	
Ethyl Benzene	100414	1.73E+00	1.98E-04	1.20E+00	1.38E-04	2.09E-03	4.19E-05	
Ethylene Dibromide	106934	_	_	_	_	1.80E-03	3.59E-05	
Formaldehyde	50000	3.09E+00	3.53E-04	9.75E-01	1.11E-04	1.73E+00	3.46E-02	
Hexane	110543	1.16E+00	1.32E-04	2.42E-02	2.76E-06	_	_	
Methylene Chloride	75092	6.56E+00	7.49E-04	_	_	3.48E-03	6.95E-05	
Methanol	67561	_	_	_	-	2.58E-01	5.16E-03	
Naphthalene	91203	7.54E-02	8.60E-06	9.18E-03	1.05E-06	8.19E-03	1.64E-04	
РАН	1151	2.51E-02	2.87E-06	2.50E-03	2.86E-07	—	—	
Styrene	100425	_	—	_	—	1.00E-03	2.00E-05	
Tetrachloroethene	127184	7.14E+00	8.16E-04	—	_	_	—	
Toluene	108883	8.30E+01	9.47E-03	4.84E-02	5.52E-06	4.71E-02	9.42E-04	
Trichloroethylene	79016	1.75E+00	1.99E-04	_	_	_	_	
Vinyl Chloride	75014	1.09E+00	1.24E-04	_	_	6.06E-04	1.21E-05	
Xylenes	1330207	6.45E+01	7.36E-03	2.42E-02	2.76E-06	1.65E-02	3.29E-04	
4.3.1 Air Quality Impact Analysis

CEQA requires that the environmental impacts of a proposed project be identified and assessed. If these impacts are found to be significant, the impacts must be mitigated to the extent feasible.

The SCAQMD has developed CEQA thresholds for determination of significance and determination if AQIA modeling is required (SCAQMD 2023). Based on the size of the Project, modeling is required to demonstrate compliance with the NAAQS and CAAQS for five primary criteria pollutants, i.e., NO₂, CO, sulfur dioxide (SO₂), PM₁₀, and PM_{2.5}.

The purpose of the AQIA is to evaluate whether or not criteria pollutant emissions resulting from the proposed Project would cause or contribute significantly to a violation of the CAAQS or NAAQS. AERMOD was used to simulate the atmospheric transport and dispersion of airborne pollutants and to quantify the maximum expected GLCs from Project emissions. The air quality modeling methodology described in this section is based on SCAQMD policies and "South Coast AQMD Modeling Guidance for AERMOD" (SCAQMD 2016).

Each pollutant is modeled separately using maximum emission rates for the appropriate averaging time. The modeled concentration is combined with a conservative background concentration for comparison to the CAAQS/NAAQS. If the Project plus background concentration is less than the CAAQS/NAAQS, then Project emissions would have a less than significant impact. This technique was used to assess the impacts of the proposed Project's NO_x , CO, and SO_2 emissions.

Per CEQA threshold guidance (SCAQMD 2023), for PM_{10} and $PM_{2.5}$, the maximum modeled concentration is compared to the corresponding significant change threshold, see Table 4-12. If the Project concentration is less than the significant change threshold, then Project emissions would not contribute significantly to a violation of the CAAQS or NAAQS.

 NO_2 modeling for the 1-hour and annual CAAQS/NAAQS followed the U.S. EPA Tier 1 technique outlined in the U.S. EPA NO_2 clarification memo (EPA 2024), which conservatively assumes that all NO_x converts to NO_2 .

4.3.1.1 Background Air Quality

Dispersion modeling to evaluate compliance with air quality standards requires the use of measured air pollutant concentrations to account for the background contributions of regional emissions, i.e., emissions sources not explicitly included in the model simulations.

Table 4-11 presents the maximum observed ambient background data for each pollutant and averaging time at the nearest representative monitoring station for the most recent data available. The nearest monitoring sites with available data (Central Orange County and Downtown Los Angeles) are located in an area that likely has higher ambient pollutant concentrations than the proposed Project site. The tabulated values were used to represent background levels for the indicated pollutants and averaging times in the AQIA to evaluate compliance with the CAAQS or NAAQS. The monitoring data indicate that air quality in the Project area complies with all NAAQS and CAAQS for NO₂, CO, and SO₂. However, the CAAQS and NAAQS are periodically exceeded in the Project area for PM_{2.5} and PM₁₀.

Table 4-11: AQIA Background Concentrations

Pollutant	Averaging	Standard	Monitoring	Am	bient B (concent	ackgro tration	und Data units)	AAQS (concentration	Exceeds Standard?	Background Concentration
	Time		Station	2020	2021	2022	Summary	units)	Standaru:	Notes
	1-Hour	California	SCAQMD; Central Orange County	70.9	67.1	53	70.9	180	No	Highest of most recent 3 years.
NO ₂ (Concentration Units = ppb)	Annual	Federal	SCAQMD; Central Orange County	13.3	12.4	11.8	13.3	53NoHighest of most recent 3 years.		
	Annual	California	SCAQMD; Central Orange County	13.3	12.4	11.8	13.3	30	No	Highest of most recent 3 years.
	1-Hour	Federal	SCAQMD; Central Orange County	2.3	2.1	2.4	2.4	35	No	Highest of most recent 3 years.
СО		California	SCAQMD; Central Orange County	2.3	2.1	2.4	2.4	20	No	Highest of most recent 3 years.
(Concentration Units = ppm)	9 Hour	Federal	SCAQMD; Central Orange County	1.7	1.5	1.4	1.7	9	No	Highest of most recent 3 years.
	o-riour	California	SCAQMD; Central Orange County	1.7	1.5	1.4	1.7	9	No	Highest of most recent 3 years.

Air Quality, GHG, HRA, AQIA, and LST Study for a Renewable Natural Gas Facility Bowerman Power LFG, LLC

Pollutant	Averaging	Standard	Monitoring Station	Am	bient B (concen	ackgrou tration	und Data units)	AAQS (concentration	Exceeds Standard?	Background Concentration
	1 11110		Station	2020	2021	2022	Summary	units)	Stanuaru.	Notes
SO ₂	1-Hour	Federal	EPA; Main St, Los Angeles	3	2	2	2.3	75	No	The design value (=3-year average of 99 th percentile of 1-hour daily max).
(Concentration Units = ppb)		California	EPA; Main St, Los Angeles	3.8	2.2	6.5	6.5	250	No	Highest of most recent 3 years. Highest of most
	24-Hour	California	EPA; Main St, Los Angeles	0.9	1.2	1.2	1.2	40	No	Highest of most recent 3 years.
	24 11	Federal	SCAQMD; Central Orange County	120	115	90	120	150	No	Highest of most recent 3 years.
$\begin{array}{c} PM_{10} \\ (Concentration \\ Units = \\ \mu g/m^3) \end{array}$	24-mour	California	SCAQMD; Central Orange County	120	115	90	120	50	Yes	Highest of most recent 3 years.
	Annual	California	SCAQMD; Central Orange County	23.9	22.9	22.3	23.9	20	Yes	Highest of most recent 3 years.
PMa c	24-Hour	Federal	SCAQMD; Central Orange County	27.10	36.70	22.10	28.63	35	No	The design value (=3-year average of 98 th percentile of 24-hour daily max).
$PM_{2.5}$ (Concentration Units = $\mu g/m^3$)	Amoust	Federal	SCAQMD; Central Orange County	11.27	11.4	9.87	11.4	9	Yes	Highest of most recent 3 years.
	Annual	California	SCAQMD; Central Orange County	11.27	11.4	9.87	11.4	12	No	Highest of most recent 3 years.

4.3.1.2 Analysis Scenario and Emission Rates

The criteria pollutant modeling was conducted using the respective emission rate for each averaging times (1-hour, 8-hour, 24-hour, and annual), depending on the pollutant (e.g., 1-hour emission rate for 1-hour averaging period). Calculated emissions for each pollutant's averaging periods are shown in Tables 4-7 to 4-9, outlined in Appendix D, and contained in the electronic modeling files.

4.3.1.3 AQIA Results

Table 4-12 presents the maximum model-predicted concentrations from the proposed Project emissions, maximum background concentrations, and the sum of these concentrations in comparison to the NO₂, SO₂, CO, PM₁₀, and PM_{2.5} CEQA thresholds. The AQIA modeling results presented in Table 4-12 demonstrate that the Project would not cause an exceedance of the NO₂, SO₂, or CO NAAQS or CAAQS.

Table 4-12 also shows that the model-predicted PM_{10} and $PM_{2.5}$ concentrations from the operational sources would not exceed the 24-hour and annual significant change thresholds. Thus, the proposed Project would not cause a violation of the NAAQS or CAAQS or contribute substantially to an existing air quality violation, and therefore, the proposed Project would have a less than significant impact on air quality.

PROJECTED IMPACT: Less Than Significant (LTS)

Pollutant	Averaging Time	Federal or State Standard	Modeled Concentration ¹ (Concentration Units)	Background Concentration (Concentration Units)	Modeled + Background Concentration (Concentration Units)	CEQA Threshold (Concentration Units)	Significance
NO_2	1-Hour	California ²	0.825 ^F	70.9	71.7	180	LTS
(Concentration	Appuol	Federal	0.027^{E}	13.3	13.3	53	LTS
Units = ppb)	Annual	California	0.027^{E}	13.3	13.3	30	LTS
CO (Concentration Units = npm)	1 Have	Federal	0.003^{F}	2.4	2.4	35	LTS
	1-nour	California	0.003 ^F	2.4	2.4	20	LTS
	8-Hour	Federal	0.001 ^F	1.7	1.7	9	LTS
ennes ppin)	8-nour	California	0.001 ^F	1.7	1.7	9	LTS
SO_2	1	Federal	2.135 ^F	2.3	4.4	75	LTS
(Concentration	1-Hour	California	2.341 ^F	6.5	8.8	250	LTS
Units = ppb)	24-Hour	California	0.612^{E}	1.2	1.8	40	LTS
PM ₁₀	24-Hour	SCAOMD	0.068^{E}	—	_	2.5	LTS, modeled
(Concentration Units = $\mu g/m^3$)	Annual	CEQA	0.010^{E}	_	_	1	concentration is less than
$\begin{array}{l} PM_{2.5} \\ (Concentration \\ Units = \mu g/m^3) \end{array}$	24-Hour	Change Threshold	0.068^{E}	_	_	2.5	significant change threshold.

Table 4-12: AQIA Modeling Results for Project Operations

Notes:

1. Superscript E indicates elevated terrain AERMOD run; superscript F indicates flat terrain AERMOD run.

2. The modeled concentration presented is the model predicted maximum hourly value using full NO2 conversion.

4.3.2 Operations – Health Risk Assessment

An HRA for the proposed Project was prepared to evaluate health risk impacts due to operational TAC emissions. The equipment and operations that would contribute to the emissions of TACs/hazardous air pollutants (HAPs) from the combustion equipment, and thus were included in this HRA, are:

- The thermal oxidizer unit that uses tail gas from the landfill and natural gas as the supplemental fuel;
- The off-spec flare pilot that uses natural gas; and
- The generator set ICE that uses natural gas.

The SCAQMD has defined CEQA health risk thresholds for long-term and short-term health impacts. All three combustion units emit TACs that potentially have the following health impacts to residential, sensitive, and worker receptors: long-term cancer risk, chronic (long-term) health hazard (HIC) to various human organs and systems, and acute (short-term) health hazards (HIA). The SCAQMD CEQA thresholds of significance for these health risks are as follows:

- Cancer risk greater than or equal to 10 in one million;
- HIC greater than or equal to 1.0; and
- HIA greater than or equal to 1.0.
- Cancer Burden >0.5 excess cancer cases (in areas ≥ 1 in one million)

The TAC emissions from the thermal oxidizer unit, off-spec flare, and generator set with ICE operational sources are shown in Table 4-10 and in Appendix D. The thermal oxidizer unit and off-spec flare are assumed to operate continuously. The generator set with ICE emissions were calculated based on the permit application maintenance and testing hours (4.2 hours per day, 50 hours per year).

4.3.2.1 Health Risk Assessment Calculations

This HRA was conducted in accordance with SCAQMD Risk Assessment Procedures (SCAQMD 2017) and the OEHHA Air Toxics Hot Spots Program Guidance Manual (OEHHA 2015).

The construction HRA health risk calculations were performed using the HARP2 ADMRT, version 22118 (CARB 2022b). The X/Q 1-hour and annual values that were determined for each source using AERMOD were imported into HARP2 and used in conjunction with hourly and annual emissions to determine the GLC of each TAC to an individual. The GLCs were then used to estimate the long-term cancer, chronic, and acute health risks to an individual.

Table 4-13 provides a listing of the HARP2 options that were selected for the analysis.

4.3.2.2 Cancer Risk

Cancer risk is the estimated probability of a maximally exposed individual potentially contracting cancer as a result of exposure to TACs over an extended period of time. This HRA estimated cancer risk over a 30-year period for residential receptor locations and 25 years for off-site worker receptor locations.

Residential receptor cancer risk estimates were calculated using CARB's "RMP Using the Derived Method," and off-site workplace cancer risk estimates used the "OEHHA Derived" calculation method. The RMP uses high-end breathing rates (95th percentile) for children from the third trimester through age 2 and 80th percentile breathing rates for all other ages for residential exposures (CARB/CAPCOA 2015). The "OEHHA Derived" method uses high-end exposure parameters for the top two exposure pathways and mean exposure parameters for the remaining pathways for cancer risk estimates. The "RMP Using the Derived Method" combines the two approaches.

4.3.2.3 Chronic Hazard Index

The emitted TACs also have non-cancer health risks due to long-term (chronic) exposure. The HIC is the sum of the individual substance HICs for all TACs affecting the same target organ system. Chronic risk was calculated using the "OEHHA Derived" Method at all receptors for an annual exposure duration. The same exposure pathways, as outlined in Table 4-13, were used in the HIC assessment.

4.3.2.4 Acute Hazard Risk

Some TACs may have non-cancer health risk due to short-term (acute) exposures. The HIA is the sum of the individual substance HIAs for all TACs affecting the same target organ system. Acute risk was calculated at all receptors for an exposure duration of 1 hour.

Parameter		Assun	nptions		Comments
Multi-Pathway	<u>.</u>		-		<u>.</u>
Inhalation	Res	×	Work	×	_
Soil	Res	×	Work	×	—
Dermal	Res	×	Work	×	"Warm" climate
Mother's Milk	Res	×	Work		-
Drinking Water	Res		Work		-
Fish	Res		Work		-
Homegrown Produce	Res	×	Work	Default for "Households that Garden"	
Beef/Dairy	Res		Work		—
Pigs, Chickens, and/or Eggs	Res		Work		
Deposition Velocity		0.02	2 m/s		
Residential Cancer Risk As	sumptior	18			
Exposure Duration		30	year		_
Fraction of Time at Home	3 rd Tr 16	imester to	to 16 years: 30 years: Or	On 1	Maximum residential cancer risk is less than 1 in a million; therefore, one in a million isopleth does not exist.
Analysis Option	RMP U	sing the	Derived Me	thod	_
Worker Cancer Risk Assun	nptions				<u>.</u>
Exposure Duration		25	year		_
Analysis Option	OEH	HHA De	rived Metho	d	-
Inhalation Rate Basis	8-hour	breathin inte	g rates, mod nsity	erate	_
Worker Adjustment Factor			1		_
Residential and Worker No	n-Cance	r Risk A	ssumptions	5	
Analysis Option	OEI	HHA De	rived Metho	d	_
Inhalation Rate Basis	Long- Mod	term 24 lerate 8-1	-hour (reside hour (worke	ent) r)	_
Worker Adjustment Factor			1		_

Table 4-13: Operational HRA – HARP2 Model Options

4.3.2.5 *Operational HRA Results*

The operational HRA results predict that all health risk factors would be less than the CEQA significance thresholds at all actual receptors. The results of the HRA are summarized in Tables 4-14 through 4-16.

The MEIR and MEIW were predicted to be the same for all health risk indices (i.e., cancer, chronic, and acute health risks). The MEIR was predicted to be at the southwest of the Project site within the Portola Springs community, and the MEIW was predicted to be Jimni Systems Inc., located west of State Route 133. Figure 4-5 shows the locations of the MEIR and MEIW receptors.

Figure 4-5: Operational HRA MEIR and MEIW Receptor Locations

Blue Circle:MEIR for Cancer and Chronic Health Risks.Orange Circle:MEIR for Acute Health Risk.Purple Circle:MEIW for Cancer, Chronic. And Acute Health Risks.

4.3.2.5.1 Cancer Risk

The HRA predicted that the cancer risk at all receptor types would be below 10 in one million, which is below the CEQA threshold. Figure 4-5 shows the locations of the MEIR and MEIW receptors. As the cancer risk was below 1 in one million, no isopleth was created. Table 4-14 presents the 30-year cancer risk at the MEIR and the 25-year cancer risk at the MEIW, plus the coordinates of each receptor.

Receptor	Exposure Duration	Cancer Risk (in one million)	UTM Easting (m)	UTM Northing (m)	CEQA Threshold ²
MEIR ¹	30-Year	0.0043	433,054	3,730,131	10 in one
MEIW ¹	25-Year	0.0003	433,145	3,731,325	million

 Table 4-14: Cancer Risk Results

1. Maximum Risk from flat terrain AERMOD run.

2. Source: SCAQMD 2023.

4.3.2.5.2 Chronic Hazard Index

The HIC at all receptor types due to operational emissions was predicted to be well below the CEQA threshold of 1.0. Figure 4-5 shows the locations of the MEIR and MEIW receptors. Table 4-15 presents the HIC at the MEIR and the annual and 8-hour HIC at the MEIW, plus the coordinates of each receptor.

 Table 4-15: Chronic Hazard Index Results

Receptor	Exposure Duration	HIC	UTM Easting (m)	UTM Northing (m)	CEQA Threshold ²
MEIR ¹	Ammunal	0.00002	433,054	3,730,131	
MEIW ¹	Annual	0.00002	433,145	3,731,325	1.0
MEIW ¹	8-hour	0.00001	433,145	3,731,325	

1. Maximum Risk from flat terrain AERMOD run.

2. Source: SCAQMD 2023.

3. The HIC at the MEIW was estimated on an annual and 8-hour basis.

4.3.2.5.3 Acute Hazard Index

The HIA at all actual receptors due to Project emissions was predicted to be below the CEQA threshold of 1.0. Figure 4-5 shows the locations of the MEIR and MEIW receptors. As the HIA was below 0.5, no isopleth was created. Table 4-16 presents the HIA at the MEIR and MEIW receptors, plus the coordinates of each receptor.

Table 4-16: Acute Hazard Index Results

Receptor	Exposure Duration	HIA	UTM Easting (m)	UTM Northing (m)	CEQA Threshold ²
MEIR ¹	1 II	0.0028	433,233	3,730,037	1.0
MEIW ¹	1-nour	0.0033	433,145	3,731,325	1.0

1. Maximum Risk from flat terrain AERMOD run.

2. Source: SCAQMD 2023.

All health risk values were predicted to be less than the CEQA significance thresholds and show that for all receptor types, i.e., MEIR and MEIW, the predicted health risks would be well below the CEQA cancer, non-cancer chronic, and acute health risk thresholds. Since the cancer risk would be less than 1 in one million for any real receptor, there is no excess cancer burden to evaluate.

5.0 ANALYSIS OF AIR QUALITY SIGNIFICANCE CRITERIA

Estimated construction and operational impacts were evaluated based on the emissions presented in this report and compared against quantitative criteria established by the SCAQMD. These criteria are relied upon to make significance determinations based on mass emissions of criteria pollutants. As shown above, the proposed Project would result in a less than significant impact related to regional and localized emissions, which would not be cumulatively considerable. Further, the proposed Project would not conflict with SCAQMD planning goals, cause substantial air pollutant concentrations, or be a source of objectionable odors.

5.1 Environmental Determination

a) Conflict with or obstruct implementation of the applicable air quality plan?

Less Than Significant Impact. The Project site is located in the South Coast Air Basin, comprising all of Orange County and the non-desert regions of Los Angeles, Riverside, and San Bernardino Counties. The SCAQMD is the agency primarily responsible for comprehensive air pollution control in the South Coast Air Basin and reducing emissions from area and point stationary, mobile, and indirect sources. The SCAQMD prepared the 2022 Air Quality Management Plan (AQMP) to meet federal and State ambient air quality standards. The 2022 AOMP contains a comprehensive list of pollution control strategies directed at reducing emissions and achieving ambient air quality standards. These strategies are developed, in part, based on regional population, housing, and employment projections prepared by the Southern California Association of Governments (SCAG). SCAG is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino, and Imperial Counties and addresses regional issues relating to transportation, the economy, community development, and the environment. With regard to future growth, SCAG has prepared the 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy (2020-2045 RTP/SCS), which provides population, housing, and employment projections for cities under its jurisdiction. These growth projections are based in part on projections originating under County and City General Plans. These growth projections were utilized in the preparation of the air quality forecasts and consistency analysis included in the 2022 AQMP. The 2020-2045 RTP/SCS was approved in September 2020.

The 2022 AQMP was adopted by the SCAQMD Governing Board on December 2, 2022, as a program to lead the South Coast Air Basin into compliance with several criteria pollutant standards and other federal requirements. It relies on emissions forecasts based on demographic and economic growth projections provided by SCAG's 2020-2045 RTP/SCS. SCAG is charged by California law to prepare and approve "the portions of each AQMP relating to demographic projections and integrated regional land use, housing, employment, and transportation programs, measures and strategies." Projects whose growth is included in the projections used in the formulation of the AQMP are considered to be consistent with the plan and not to interfere with its attainment. The SCAQMD recommends that, when determining whether a project is consistent with the current AQMP, a lead agency must assess whether the project would directly obstruct implementation of the plan and whether it is consistent with the demographic and economic assumptions (typically land use-related, such as resultant employment or residential units) upon which the plan is based (SCAQMD 2022).

A significant air quality impact may occur if a project is inconsistent with the AQMP or would in some way represent a substantial hindrance to employing the policies or obtaining the goals of that plan. As shown above, the incremental emissions from the proposed Project do not exceed the SCAOMD's established thresholds of potential significance for air quality impacts. The proposed Project would provide a beneficial use for the LFG generated at the landfill and would be consistent with the goals and objectives of the AQMP. Therefore, the Project would not increase the frequency or severity of an air quality standards violation or cause a new violation. Furthermore, the Project is consistent with the land use and zoning designation through development of the proposed Project. Because the Project would be consistent with the City's General Plan, it is also consistent with the regional growth projections adopted in the 2022 AQMP. Air quality emissions generated by the proposed Project are considered to be evaluated in the AQMP, and Project development in accordance with the City's General Plan would not conflict with or obstruct implementation of the regional 2022 AOMP. Thus, the proposed Project is not expected to conflict with or obstruct the implementation of the AQMP and SCAQMD rules. Therefore, impacts would be less than significant, and no mitigation is required.

b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

Less Than Significant Impact. To evaluate impacts, quantitative significance criteria established by the local air quality agency, such as the SCAQMD, may be relied upon to make significance determinations based on mass emissions of criteria pollutants.

A significant impact would occur if the proposed Project would violate any air quality standard or contribute substantially to an existing or projected air quality violation. Project construction emissions were estimated using CalEEMod, the statewide land use emissions computer model designed to quantify potential criteria pollutant and GHG emissions associated with both construction and operations from land use projects. According to the CalEEMod model results, as outlined in this report, overall construction (maximum daily emissions) for the proposed Project would not exceed the SCAQMD thresholds for the criteria pollutants ROG, NO_x, CO, oxides of sulfur (SO_x), and respirable and fine particulate matter (PM₁₀ and PM_{2.5}, respectively). As shown in Tables 3-6, the Project is estimated to generate less than the SCAQMD threshold of 75 pounds per day ROG, 100 pounds per day NO_x, 550 pounds per day CO, 150 pounds per day SO_x, 150 pounds per day PM₁₀, and 55 pounds per day PM_{2.5} during the construction phase.

The primary sources of operations phase emissions are the three stationary sources (i.e., thermal oxidizer, flare, and ICE), on-road vehicles traveling to and from the site buildings, and operational activities such as landscape equipment, consumer products, and energy use. As shown in Tables 3-7, the Project is estimated to generate less than the SCAQMD threshold of 55 pounds per day ROG, 55 pounds per day NO_x, 550 pounds per day CO, 150 pounds per day SO_x, 150 pounds per day PM₁₀, and 55 pounds per day PM_{2.5} during the operational phase.

The proposed Project site is 4.24 acres in SRA Zone 19 – Saddleback Valley. As a conservative estimate, the 2-acre screening lookup tables were used to evaluate NO_x, CO, PM₁₀, and PM_{2.5} impacts on nearby receptors. The nearest receptor is approximately 1,300

meters (4,200 feet) away from the proposed RNG facility. Therefore, the impact evaluation was performed using the closest distance within SCAQMD LST tables of 500 meters for construction. (SCAQMD 2008a). As shown in in Table 3-8, on-site emissions from construction would meet the LST passing criteria at the nearest receptors (500 meters).

Additionally, the AQIA conducted shows that operational activities would not cause an exceedance of the NO₂, SO₂, or CO NAAQS or CAAQS. Furthermore, the modelpredicted PM_{10} and $PM_{2.5}$ concentrations from the operational sources would not exceed the 24-hour and annual significant change thresholds (see Table 4-12). Thus, the proposed Project would not cause a violation of the NAAQS or CAAQS or contribute substantially to an existing air quality violation, and therefore, the proposed Project would have a less than significant impact on air quality.

SCAQMD Guidance

The SCAQMD's 2003 guidance on addressing cumulative impacts for air quality is as follows: "As Lead Agency, the SCAQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR [Environmental Impact Report]. [...] Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are generally not considered to be cumulatively significant" (SCAQMD 2003).

CEQA Guidelines

As referenced above, the SCAQMD cumulative air quality significance thresholds are the same as the project-specific air quality significance thresholds. Because the criteria pollutant mass emissions impacts shown in Tables 3-3 through 3-6 would not be expected to exceed any of the SCAQMD air quality significance thresholds, cumulative air quality impacts from comparable development projects would also be expected to be less than significant. Therefore, potential adverse impacts from implementing the proposed Project would not be "cumulatively considerable" as defined by CEQA Guidelines Section 15064(h)(1) for air quality impacts. Per CEQA Guidelines Section 15064(h)(4), the mere existence of significant cumulative impacts caused by other projects alone shall not constitute substantial evidence that the proposed Project's incremental effects would be cumulatively considerable.

As shown in Tables 3-6 through 3-8 and Table 4-12, the proposed Project would result in a less than significant impact related to regional emissions, and no mitigation is required.

c) Expose sensitive receptors to substantial pollutant concentrations?

Less Than Significant Impact. A significant impact would occur if the proposed Project were to expose sensitive receptors to pollutant concentrations. The SCAQMD identifies the following as sensitive receptors: long-term health care facilities, rehabilitation centers, convalescent centers, retirement homes, residences, schools, playgrounds, childcare centers, and athletic facilities. There are residential land uses approximately 0.87 mile west of the Project site. The Project would be subject to grading and construction standards to mitigate air pollution and dust impacts. As demonstrated by the HRA results presented in Section 4.0, the Project is not expected to substantially contribute to pollutant

concentrations or expose surrounding residences and other sensitive receptors during construction or operation. The Project is required to meet SCAQMD Rule 403 requirements for controlling fugitive dust, as well as the City's requirements for grading and construction related to air pollution. Therefore, construction and operation of the Project would result in a less than significant impact for both localized and regional air pollution emissions, and no mitigation is required.

d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

Less Than Significant Impact. Potential sources that may emit odors during construction activities include equipment exhaust and architectural coatings. Odors from these sources would be localized and generally confined to the immediate area surrounding the Project site. The proposed Project would utilize typical construction techniques, and the odors would be typical of most construction sites and temporary in nature. Construction of the proposed Project would not cause an odor nuisance. The proposed RNG facility would not create odors because the LFG is being processed and compressed for shipment in the SoCalGas pipeline, and not released into the air. The byproducts of the treatment would be combusted at high temperatures just as it is currently being combusted in the existing flare station. The maintenance work on site also would not generate any significant odor. Therefore, the proposed Project would result in a less than significant impact related to objectionable odors, and no mitigation is required.

5.2 Mitigation Measures

None required.

6.0 ANALYSIS OF GREENHOUSE GAS EMISSIONS SIGNIFICANCE CRITERIA

This technical report contains details of the interrelated air quality and GHG studies. As shown in Table 3-11, GHG emissions would be below the GHG significance threshold for industrial projects.

6.1 Environmental Determination

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

Less Than Significant Impact. Using CalEEMod, direct on-site and off-site GHG emissions were estimated for construction and operation, and indirect off-site GHG emissions were estimated to account for electric power used by the proposed Project, water conveyance, and solid waste disposal. In addition, stationary source emission calculations were performed for the RNG thermal oxidizer and the RNG flare, as well as emergency generator usage. All CO₂ derived from LFG is considered biogenic (i.e., are part of the natural biological/physical carbon cycle) and does not result in a net increase in atmospheric CO₂. Therefore, for the tail gas streams, only the combustion byproducts of CH₄ and N_2O (i.e., anthropogenic GHGs) are included in this analysis.

The SCAQMD has officially adopted an industrial facility mass emissions threshold of $10,000 \text{ MT CO}_2e$ per year (SCAQMD 2023).

Table 3-11 shows the incremental GHG emissions and evaluates them against SCAQMD significance thresholds. Operational measures incorporate typical code-required energy and water conservation features. Off-site traffic impacts are included in these emissions estimates, along with construction emissions amortized over 30 years.

The proposed project would provide a beneficial use and as shown in Table 3-11, incremental GHG emissions would be below the proposed GHG significance threshold for land use projects. Thus, impacts would be less than significant.

b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Less Than Significant Impact. The California legislature passed Senate Bill (SB) 375 to connect regional transportation planning to land use decisions made at a local level. SB 375 requires the metropolitan planning organizations (MPOs) to prepare a Sustainable Communities Strategy (SCS) in their RTPs to achieve the per capita GHG reduction targets. For the SCAG region, the SCS is contained in the 2024-2050 RTP/SCS. The 2024-2050 RTP/SCS focuses the majority of new housing and job growth in high-quality transit areas and other opportunity areas on existing main streets, downtowns, and commercial corridors, resulting in an improved jobs-housing balance and more opportunity for transit-oriented development (SCAG 2024). In addition, SB 743, adopted September 27, 2013, encourages land use and transportation planning decisions and investments that reduce vehicle miles traveled that contribute to GHG emissions, as required by AB 32. The proposed Project would not interfere with SCAG's ability to implement the regional strategies outlined in the 2024-2050 RTP/SCS. As such, impacts would be less than significant, and no mitigation is required.

6.2 Mitigation Measures

None required.

7.0 REFERENCES

Association of Environmental Professionals (AEP). 2016. Final White Paper Beyond 2020 and Newhall: A field Guide to New CEQA Greenhouse Gas Thresholds and Climate Action Plan Targets for California. Website (<u>https://califaep.org/docs/AEP-2016 Final White Paper.pdf</u>)

California Air Resources Board (CARB). 2022a. 2022 Scoping Plan for Achieving Carbon Neutrality. Website (<u>https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents</u>).

California Air Resources Board (CARB). 2022b. Hotspots Analysis and Reporting Program Version 2 (HARP2) Air Dispersion Modeling and Risk Tool (ADMRT). Website (https://ww2.arb.ca.gov/our-work/programs/hot-spots-analysis-reporting-program).

California Office of Environmental Health Hazard Assessment (OEHHA). 2015. Air Toxics Hot Spots Program, Risk Assessment Guidelines Guidance Manual for Preparation of Health Risk Assessments. Website (https://oehha.ca.gov/air/crnr/notice-adoption-air-toxics-hot-spots-program-guidance-manual-preparation-health-risk-0).

California Department of Resources Recycling and Recovery (CalRecycle). 2016. Solid Waste Cleanup Program Weights and Volumes for Project Estimates. Website (<u>https://www.calrecycle.ca.gov</u>).

California Emissions Estimation Model[®] (CalEEMod). 2022. Version 2022.1.1.28 Website (<u>http://www.caleemod.com/</u>).

California Energy Commission (CEC). 2022. Building Energy Efficiency Program. Website (https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2022-building-energy-efficiency).

City of Irvine. 2023. Climate Action and Adaptation Plan. Website (<u>https://www.cityofirvine.org/environmental-programs/climate-planning</u>).

Southern California Association of Governments (SCAG). 2024. The 2024-2050 Regional Transportation Plan/ Sustainable Communities Strategy. Website (scag.ca.gov/sites/main/files/file-attachments/23-2987-connect-socal-2024-final-complete-040424.pdf?1714175547

South Coast Air Quality Management District (SCAQMD). 2023. Air Quality Significance Thresholds. Website (<u>https://www.aqmd.gov/docs/default-source/ceqa/handbook/south-coast-aqmd-air-quality-significance-thresholds.pdf?sfvrsn=25</u>).

South Coast Air Quality Management District (SCAQMD). 2022. Air Quality Management Plan. Website (<u>http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2022-air-quality-management-plan/final-2022-aqmp/final-2022-aqmp.pdf?sfvrsn=16</u>).

South Coast Air Quality Management District (SCAQMD). 2008a. Localized Significance Threshold Methodology. Website (<u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/final-lst-methodology-document.pdf?sfvrsn=2</u>).

South Coast Air Quality Management District (SCAQMD). 2008b. Interim CEQA GHG Significance Threshold for Stationary Sources, Rules, and Plans. Website

Air Quality, GHG, HRA, AQIA, and LST Study for a Renewable Natural Gas Facility Bowerman Power LFG, LLC

(http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqasignificance-thresholds/ghgboardsynopsis.pdf?sfvrsn=2).

South Coast Air Quality Management District (SCAQMD). 2003. South Coast AQMD Cumulative Impacts Working Group, White Paper on Potential Control Strategies to Address Cumulative Impacts From Air Pollution, August 2003, Appendix D, Cumulative Impact Analysis Requirements Pursuant to CEQA, at D-3. Website (<u>http://www.aqmd.gov/docs/default-</u> <u>source/Agendas/Environmental-Justice/cumulative-impacts-working-group/cumulative-impacts-white-paper.pdf</u>).

South Coast Air Quality Management District (SCAQMD). 2017. Risk Assessment Procedures for Rules 1401, 1401.1, and 212, Version 8.1. Website (<u>http://www.aqmd.gov/docs/default-source/permitting/rule-1401-risk-assessment/riskassessproc-v8-1.pdf?sfvrsn=12</u>).

South Coast Air Quality Management District (SCAQMD). 2016. Data for AERMOD & Version 9 Meteorological Stations List/Map. Website (<u>https://www.aqmd.gov/home/air-quality/meteorological-data/data-for-aermod</u>).

South Coast Air Quality Management District (SCAQMD). 2006. SCAQMD Modeling Guidance for AERMOD. Website (<u>http://www.aqmd.gov/home/air-quality/meteorological-data/modeling-guidance</u>).

United States Environmental Protection Agency (EPA). 2024. Nitrogen Dioxide/Nitrogen Oxide In-Stack Ratio (ISR) Database. Website (<u>https://www.epa.gov/scram/nitrogen-dioxidenitrogen-oxide-stack-ratio-isr-database</u>).

United States Environmental Protection Agency (EPA). 2022. AERMOD Modeling System. Website (<u>https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models</u>).

United States Environmental Protection Agency (EPA). 2012. Haul Road Workgroup Final Report. March 2, 2012. Website (<u>https://www.epa.gov/sites/default/files/2020-10/documents/haul_road_workgroup-final_report_package-20120302.pdf</u>).

APPENDIX A – CALEEMOD OUTPUTS

Bowerman Power LFG, LLC (BP) - RNG Plant 9-5-2024 Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
 - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
 - 3.1. Earthworks A (2025) Unmitigated
 - 3.2. Earthworks A (2025) Mitigated
 - 3.3. Earthworks B (2025) Unmitigated

- 3.4. Earthworks B (2025) Mitigated
- 3.5. Building Construction A (2025) Unmitigated
- 3.6. Building Construction A (2025) Mitigated
- 3.7. Building Construction B (2025) Unmitigated
- 3.8. Building Construction B (2025) Mitigated
- 3.9. Building Construction B (2026) Unmitigated
- 3.10. Building Construction B (2026) Mitigated
- 3.11. Building Construction C (2026) Unmitigated
- 3.12. Building Construction C (2026) Mitigated
- 3.13. Paving (2026) Unmitigated
- 3.14. Paving (2026) Mitigated
- 3.15. Architectural Coating (2026) Unmitigated
- 3.16. Architectural Coating (2026) Mitigated
- 3.17. SoCalGas Pipeline Construction (2025) Unmitigated
- 3.18. SoCalGas Pipeline Construction (2025) Mitigated
- 3.19. SoCalGas Pipeline Construction (2026) Unmitigated
- 3.20. SoCalGas Pipeline Construction (2026) Mitigated
- 4. Operations Emissions Details

- 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.1.2. Mitigated
- 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.2. Electricity Emissions By Land Use Mitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.2.4. Natural Gas Emissions By Land Use Mitigated
- 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.3.2. Mitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.4.2. Mitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.5.2. Mitigated
- 4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

4.6.2. Mitigated

- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
 - 4.7.2. Mitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
 - 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
 - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated

5. Activity Data

- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.2.2. Mitigated
- 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated

5.9.2. Mitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

5.10.2. Architectural Coatings

5.10.3. Landscape Equipment

5.10.4. Landscape Equipment - Mitigated

5.11. Operational Energy Consumption

5.11.1. Unmitigated

5.11.2. Mitigated

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

5.12.2. Mitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.13.2. Mitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.14.2. Mitigated

- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
 - 5.15.2. Mitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated

5.18.2.2. Mitigated

- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

7. Health and Equity Details

- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Bowerman Power LFG, LLC (BP) - RNG Plant 9-5-2024
Construction Start Date	2/12/2025
Operational Year	2027
Lead Agency	
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	4.20
Location	33.71669152511946, -117.70992361946648
County	Orange
City	
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5930
EDFZ	7
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.28

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
General Office Building	2.67	1000sqft	0.06	2,670	0.00			

Bowerman Power LFG, LLC (BP) - RNG Plant 9-5-2024 Detailed Report, 9/5/2024

General Heavy Industry	22.0	1000sqft	0.51	22,045	0.00			
Other Asphalt Surfaces	23.2	1000sqft	0.53	0.00	0.00			—
User Defined Linear	2.40	Mile	0.00	0.00	0.00	—		—
Other Non-Asphalt Surfaces	137	1000sqft	3.14	0.00	0.00	—	_	—

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-10-A	Water Exposed Surfaces
Construction	C-10-C	Water Unpaved Construction Roads
Construction	C-11	Limit Vehicle Speeds on Unpaved Roads
Construction	C-12	Sweep Paved Roads
Construction	C-13	Use Low-VOC Paints for Construction
Area Sources	AS-1	Use Low-VOC Cleaning Supplies
Area Sources	AS-2	Use Low-VOC Paints

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—		_												
Unmit.	20.2	56.8	50.0	0.16	2.02	78.2	80.2	1.87	14.6	16.5	—	20,908	20,908	1.33	2.13	30.0	21,607
Mit.	11.1	56.8	50.0	0.16	2.02	22.9	24.9	1.87	4.58	6.46	—	20,908	20,908	1.33	2.13	30.0	21,607
% Reduced	45%	_		_	_	71%	69%	_	69%	61%	_	_	_	_	_	_	_

Daily, Winter (Max)	_	—	—	—	—	—						—	—	_		—	—
Unmit.	20.2	40.1	31.0	0.13	1.37	64.8	65.8	1.26	10.2	11.4		17,147	17,147	1.18	2.07	0.74	17,794
Mit.	11.1	40.1	31.0	0.13	1.37	16.8	17.9	1.26	2.68	3.94		17,147	17,147	1.18	2.07	0.74	17,794
% Reduced	45%	—	—	—		74%	73%		74%	66%				—		_	_
Average Daily (Max)	_			_	—			—									
Unmit.	2.14	20.4	20.7	0.05	0.81	36.9	37.7	0.74	5.69	6.44	—	5,682	5,682	0.29	0.33	2.18	5,791
Mit.	2.14	20.4	20.7	0.05	0.81	9.90	10.7	0.74	1.60	2.35		5,682	5,682	0.29	0.33	2.18	5,791
% Reduced	—	—	—	-	—	73%	72%	_	72%	64%	_	_	—	—	—	—	_
Annual (Max)	_	—	_	-	_	_	—	_	—	_	_	_	_	_	_	_	_
Unmit.	0.39	3.72	3.77	0.01	0.15	6.73	6.87	0.14	1.04	1.17	_	941	941	0.05	0.06	0.36	959
Mit.	0.39	3.72	3.77	0.01	0.15	1.81	1.95	0.14	0.29	0.43	—	941	941	0.05	0.06	0.36	959
% Reduced		_	_	_	_	73%	72%		72%	64%			_	_	_	_	

2.2. Construction Emissions by Year, Unmitigated

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	—	—	—	-	—	—	—	—	_	—	—			—	—	—
2025	5.46	56.8	50.0	0.16	2.02	78.2	80.2	1.87	14.6	16.5	—	20,908	20,908	1.33	2.13	30.0	21,607
2026	20.2	17.0	20.5	0.03	0.70	64.6	65.3	0.64	8.54	9.18	—	3,942	3,942	0.15	0.07	1.61	3,967
Daily - Winter (Max)	_	_	_	_	-	_	_	_		_	_	_	_			-	_

2025	3.51	40.1	31.0	0.13	1.37	64.7	65.8	1.26	10.2	11.4		17,147	17,147	1.18	2.07	0.74	17,794
2026	20.2	22.4	28.6	0.04	0.94	64.8	65.7	0.86	8.58	9.44	_	5,314	5,314	0.21	0.08	0.06	5,343
Average Daily	—	_	—	—	—	—	—	—	—	—	_	_	—	—	_	—	—
2025	2.14	20.4	20.7	0.05	0.81	36.9	37.7	0.74	5.69	6.44		5,682	5,682	0.29	0.33	2.18	5,791
2026	1.44	5.98	7.15	0.01	0.25	22.8	23.0	0.23	3.02	3.25	—	1,413	1,413	0.06	0.03	0.26	1,422
Annual	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2025	0.39	3.72	3.77	0.01	0.15	6.73	6.87	0.14	1.04	1.17	—	941	941	0.05	0.06	0.36	959
2026	0.26	1.09	1.31	< 0.005	0.05	4.15	4.20	0.04	0.55	0.59	_	234	234	0.01	< 0.005	0.04	236

2.3. Construction Emissions by Year, Mitigated

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	-	-	-	—	—	-	—	-	_	_	-	-	_	-	—
2025	5.46	56.8	50.0	0.16	2.02	22.9	24.9	1.87	4.58	6.46	—	20,908	20,908	1.33	2.13	30.0	21,607
2026	11.1	17.0	20.5	0.03	0.70	16.6	17.3	0.64	2.24	2.88	—	3,942	3,942	0.15	0.07	1.61	3,967
Daily - Winter (Max)	_	_	-	-	-	—	—	_	—	-	—	—	-	-	_	_	—
2025	3.51	40.1	31.0	0.13	1.37	16.7	17.9	1.26	2.68	3.94	—	17,147	17,147	1.18	2.07	0.74	17,794
2026	11.1	22.4	28.6	0.04	0.94	16.8	17.7	0.86	2.28	3.14	—	5,314	5,314	0.21	0.08	0.06	5,343
Average Daily	—	—	—	_	—	—	—	—	_		_	—	_	_	—	—	—
2025	2.14	20.4	20.7	0.05	0.81	9.90	10.7	0.74	1.60	2.35	—	5,682	5,682	0.29	0.33	2.18	5,791
2026	1.06	5.98	7.15	0.01	0.25	5.86	6.11	0.23	0.79	1.02	—	1,413	1,413	0.06	0.03	0.26	1,422
Annual	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
2025	0.39	3.72	3.77	0.01	0.15	1.81	1.95	0.14	0.29	0.43	_	941	941	0.05	0.06	0.36	959
2026	0.19	1.09	1.31	< 0.005	0.05	1.07	1.11	0.04	0.14	0.19	_	234	234	0.01	< 0.005	0.04	236

2.4. Operations Emissions Compared Against Thresholds

PM2.5T ROG СО SO2 PM10D PM10T PM2.5E PM2.5D BCO2 Un/Mit. NOx PM10E NBCO2 CO2T CH4 CO2e N20 Daily, Summer (Max) 26.4 60.7 124 5.26 5.36 5.26 0.02 50.688 50.714 Unmit. 5.29 0.10 5.29 26.7 4.36 0.20 6.16 50.888 Mit. 5.21 26.4 60.7 124 5.26 0.10 5.36 5.26 0.02 5.29 26.7 50,688 50,714 4.36 50,888 0.20 6.16 % 1% Reduced Daily, ____ ____ ____ ____ ____ ___ _ ____ ____ Winter (Max) 50,680 Unmit. 5.11 26.4 59.6 124 5.26 0.10 5.36 5.26 0.02 5.29 26.7 50.706 4.36 0.20 5.76 50.880 50,706 Mit. 5.04 26.4 59.6 124 5.26 0.10 5.36 5.26 0.02 5.29 26.7 4.36 0.20 5.76 50,680 50,880 % 2% Reduced Average ____ ____ ____ ____ ____ Daily (Max) Unmit. 5.12 25.8 59.2 87.8 5.19 0.10 5.29 5.19 0.02 5.21 26.7 50,675 50,702 4.47 0.36 5.92 50,928 25.8 50,702 50,928 Mit. 5.05 59.2 87.8 5.19 0.10 5.29 5.19 0.02 5.21 26.7 50,675 4.47 0.36 5.92 2% % ____ ____ ____ ____ ____ _ ____ ____ _ _ ____ Reduced Annual ____ _ ____ _ ___ ____ ____ ____ ____ _ (Max) 0.93 4.71 10.8 16.0 0.95 0.02 0.96 0.95 < 0.005 0.95 8,394 0.74 8,432 Unmit. 4.43 8,390 0.06 0.98 Mit. 0.92 4.71 10.8 16.0 0.95 0.02 0.96 0.95 < 0.005 0.95 4.43 0.74 8,432 8,390 8,394 0.06 0.98 % 2% ____ ____ _ _ _ ____ ____ Reduced

2.5. Operations Emissions by Sector, Unmitigated

Sector	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	-	-	_	_	-	-	_	_	_	-	_	—	—	_	—
Mobile	0.02	0.04	0.29	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	—	110	110	< 0.005	< 0.005	0.42	112
Area	0.79	0.01	1.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	4.42	4.42	< 0.005	< 0.005	—	4.44
Energy	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02	—	702	702	0.05	< 0.005	—	704
Water	—	—	—	—	—	—	—	—	—	—	10.7	55.3	66.0	1.10	0.03	—	101
Waste	—	—	—	—	—	—	—	—	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	5.74	5.74
User-Def ined	4.46	26.1	59.1	124	5.24	_	5.24	5.24	_	5.24	_	49,816	49,816	1.60	0.16	_	49,904
Total	5.29	26.4	60.7	124	5.26	0.10	5.36	5.26	0.02	5.29	26.7	50,688	50,714	4.36	0.20	6.16	50,888
Daily, Winter (Max)		_	-	-	_	-	-	-	-	-	-	-	_	_	-	_	_
Mobile	0.02	0.04	0.26	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	_	106	106	< 0.005	0.01	0.01	108
Area	0.62	—	_	—	_	_	_	_	_	—	_	—	-	-	_	—	—
Energy	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02	—	702	702	0.05	< 0.005	—	704
Water	—	—	—	—	—	—	—	—	—	—	10.7	55.3	66.0	1.10	0.03	—	101
Waste	—	—	—	—	—	—	—	—	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	5.74	5.74
User-Def ined	4.46	26.1	59.1	124	5.24	—	5.24	5.24	_	5.24	_	49,816	49,816	1.60	0.16		49,904
Total	5.11	26.4	59.6	124	5.26	0.10	5.36	5.26	0.02	5.29	26.7	50,680	50,706	4.36	0.20	5.76	50,880
Average Daily	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.02	0.04	0.26	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	_	107	107	< 0.005	0.01	0.18	109

Bowerman Power LFG, LLC (BP) - RNG Plant 9-5-2024 Detailed Report, 9/5/2024

Area	0.74	0.01	0.74	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	3.03	3.03	< 0.005	< 0.005	—	3.04
Energy	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02	—	702	702	0.05	< 0.005	—	704
Water	—	—	—	—	—	—	—	—	—	—	10.7	55.3	66.0	1.10	0.03	—	101
Waste	—	—	—	—	—	—	—	—	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Refrig.	_	_	—	—	—	—	—	_	—	—	—	—	—	_	—	5.74	5.74
User-Def ined	4.35	25.5	58.0	87.8	5.17	_	5.17	5.17	-	5.17	_	49,808	49,808	1.72	0.33	-	49,949
Total	5.12	25.8	59.2	87.8	5.19	0.10	5.29	5.19	0.02	5.21	26.7	50,675	50,702	4.47	0.36	5.92	50,928
Annual	_	_	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—
Mobile	< 0.005	0.01	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	—	17.8	17.8	< 0.005	< 0.005	0.03	18.1
Area	0.13	< 0.005	0.13	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.50	0.50	< 0.005	< 0.005	—	0.50
Energy	< 0.005	0.05	0.04	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	116	116	0.01	< 0.005	—	117
Water	_	_	—	—	—	—	—	_	—	—	1.77	9.15	10.9	0.18	< 0.005	—	16.8
Waste	_	—	—	—	—	—	—	_	—	—	2.66	0.00	2.66	0.27	0.00	—	9.31
Refrig.	—	—	—	—	—	—	—	_	—	—	—	—	—	_	—	0.95	0.95
User-Def ined	0.79	4.65	10.6	16.0	0.94	—	0.94	0.94	—	0.94	—	8,246	8,246	0.28	0.05	—	8,270
Total	0.93	4.71	10.8	16.0	0.95	0.02	0.96	0.95	< 0.005	0.95	4.43	8,390	8,394	0.74	0.06	0.98	8,432

2.6. Operations Emissions by Sector, Mitigated

			•														
Sector	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	-	—	-	-	-	-	-	-	-	-	-	-	—	-	_
Mobile	0.02	0.04	0.29	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	_	110	110	< 0.005	< 0.005	0.42	112
Area	0.72	0.01	1.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	4.42	4.42	< 0.005	< 0.005	—	4.44
Energy	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02	—	702	702	0.05	< 0.005	—	704
Water	_	_	_	_	_	_	_	_	_	_	10.7	55.3	66.0	1.10	0.03	_	101

Bowerman Power LFG, LLC (BP) - RNG Plant 9-5-2024 Detailed Report, 9/5/2024

Waste			—	_	—	—	_			_	16.1	0.00	16.1	1.61	0.00	_	56.2
Refrig.	—		_	—	—	—	_	—	—	—	—	—	—	—	_	5.74	5.74
User-Def ined	4.46	26.1	59.1	124	5.24		5.24	5.24		5.24	—	49,816	49,816	1.60	0.16		49,904
Total	5.21	26.4	60.7	124	5.26	0.10	5.36	5.26	0.02	5.29	26.7	50,688	50,714	4.36	0.20	6.16	50,888
Daily, Winter (Max)				_							—	—	—				
Mobile	0.02	0.04	0.26	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	—	106	106	< 0.005	0.01	0.01	108
Area	0.54		—	—	—	—	—	—	—	—	—	—	—		_	—	—
Energy	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02	—	702	702	0.05	< 0.005	—	704
Water		—	—	—	—	—	—	—	—	—	10.7	55.3	66.0	1.10	0.03	—	101
Waste		—	—	—	—	—	—	—	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Refrig.		—	—	—	—	—	—	—	—	—	—	—	—		—	5.74	5.74
User-Def ined	4.46	26.1	59.1	124	5.24	—	5.24	5.24	_	5.24	—	49,816	49,816	1.60	0.16	—	49,904
Total	5.04	26.4	59.6	124	5.26	0.10	5.36	5.26	0.02	5.29	26.7	50,680	50,706	4.36	0.20	5.76	50,880
Average Daily		—	—	—	—	—	—	—	_	—	_	—	—		—	—	
Mobile	0.02	0.04	0.26	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	_	107	107	< 0.005	0.01	0.18	109
Area	0.66	0.01	0.74	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	3.03	3.03	< 0.005	< 0.005	_	3.04
Energy	0.01	0.27	0.23	< 0.005	0.02	_	0.02	0.02	_	0.02	_	702	702	0.05	< 0.005	_	704
Water		_	_	_	_	_	_	_	_	_	10.7	55.3	66.0	1.10	0.03	_	101
Waste		—	—	—	—	—	_	—	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Refrig.			—	—	—	—	_	—	—	—	—	—	—		_	5.74	5.74
User-Def ined	4.35	25.5	58.0	87.8	5.17	—	5.17	5.17	_	5.17	—	49,808	49,808	1.72	0.33	—	49,949
Total	5.05	25.8	59.2	87.8	5.19	0.10	5.29	5.19	0.02	5.21	26.7	50,675	50,702	4.47	0.36	5.92	50,928
Annual			_	_	_	_				_	_	_	_				
Mobile	< 0.005	0.01	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	_	17.8	17.8	< 0.005	< 0.005	0.03	18.1
Area	0.12	< 0.005	0.13	< 0.005	< 0.005	_	< 0.005	< 0.005		< 0.005		0.50	0.50	< 0.005	< 0.005		0.50

Energy	< 0.005	0.05	0.04	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	116	116	0.01	< 0.005	_	117
Water	—	—	—	—	—	—	—	—	—	—	1.77	9.15	10.9	0.18	< 0.005	—	16.8
Waste	—	—	—	—	—	—	—	—	—	—	2.66	0.00	2.66	0.27	0.00	—	9.31
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.95	0.95
User-Def ined	0.79	4.65	10.6	16.0	0.94	—	0.94	0.94	—	0.94	—	8,246	8,246	0.28	0.05		8,270
Total	0.92	4.71	10.8	16.0	0.95	0.02	0.96	0.95	< 0.005	0.95	4.43	8,390	8,394	0.74	0.06	0.98	8,432

3. Construction Emissions Details

3.1. Earthworks A (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_		_	_		_	_	_	_	_		_				
Daily, Winter (Max)		_		_	_		_	_	—	_	_		_				
Off-Road Equipmer	3.31 t	31.6	30.2	0.05	1.37	—	1.37	1.26	—	1.26	—	5,295	5,295	0.21	0.04	—	5,314
Dust From Material Movemen	 t					19.7	19.7		10.1	10.1							
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer	0.10 t	0.95	0.91	< 0.005	0.04	_	0.04	0.04	_	0.04	-	160	160	0.01	< 0.005		160

Bowerman Power LFG, LLC (BP) - RNG Plant 9-5-2024 Detailed Report, 9/5/2024

Dust From Material Movemen	 t					0.59	0.59		0.30	0.30							
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	0.02 t	0.17	0.17	< 0.005	0.01	—	0.01	0.01	—	0.01		26.4	26.4	< 0.005	< 0.005		26.5
Dust From Material Movemen	 t					0.11	0.11		0.06	0.06							_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	_	—	—	—	_	_	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)												—			—		—
Daily, Winter (Max)	—									—	—	—	—	—	—	—	—
Worker	0.06	0.07	0.85	0.00	0.00	0.23	0.23	0.00	0.05	0.05	_	221	221	< 0.005	0.01	0.02	224
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily			_	—		—			—					—	_		—
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	6.75	6.75	< 0.005	< 0.005	0.01	6.84
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	—	_	_	-	_	—	_	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.12	1.12	< 0.005	< 0.005	< 0.005	1.13
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
3.2. Earthworks A (2025) - Mitigated

Criteria Pollutants	s (lb/day for da	ily, ton/yr for a	nnual) and GHGs	(lb/day for da	ily, MT/yr for annual)
---------------------	------------------	-------------------	-----------------	----------------	------------------------

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	_	_	—	—	_	_	—	_	_	_	_	_	—	—
Daily, Summer (Max)	_		_		—	-	—	—	—	—	—	—	—	—	—	-	—
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen	3.31 t	31.6	30.2	0.05	1.37	—	1.37	1.26	-	1.26	_	5,295	5,295	0.21	0.04	—	5,314
Dust From Material Movemen	 t		—		_	5.11	5.11		2.63	2.63		_		—	—	_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—		—	—	_	—	—	—	—	—	—	—	—	—	-	_	—
Off-Road Equipmen	0.10 t	0.95	0.91	< 0.005	0.04	-	0.04	0.04	-	0.04	-	160	160	0.01	< 0.005	-	160
Dust From Material Movemen	 t					0.15	0.15		0.08	0.08						_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen	0.02 t	0.17	0.17	< 0.005	0.01	-	0.01	0.01	-	0.01	—	26.4	26.4	< 0.005	< 0.005	_	26.5
Dust From Material Movemen	 t					0.03	0.03		0.01	0.01						_	

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	_	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	_	-	_	_	-	_	_	—	—	—	—	-	_	_	—
Daily, Winter (Max)	_	_	—	—	_	—	—	—	—	_	_	_	_	_	_		_
Worker	0.06	0.07	0.85	0.00	0.00	0.23	0.23	0.00	0.05	0.05	—	221	221	< 0.005	0.01	0.02	224
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	—	_	_	_	—	_	-	—	-	-	-	-	—	—	—	—
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	6.75	6.75	< 0.005	< 0.005	0.01	6.84
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	-	_	_	-	_	_	_	_	-	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.12	1.12	< 0.005	< 0.005	< 0.005	1.13
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Earthworks B (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	_	—	—	—	—	—	—	—	_	—	—
Daily, Summer (Max)					_										_		
Off-Road Equipmer	3.10 t	24.2	21.3	0.05	1.12	—	1.12	1.03	—	1.03	—	4,121	4,121	0.17	0.03	—	4,135

Dust From Material Movemen	 t					9.90	9.90		5.06	5.06	_	_	_	_	_	_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	—		_					—	_	—	_	—	—	_	
Off-Road Equipmen	3.10 t	24.2	21.3	0.05	1.12	—	1.12	1.03	_	1.03	—	4,121	4,121	0.17	0.03	—	4,135
Dust From Material Movemen	 t					9.90	9.90		5.06	5.06	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_		—		—	—			—	—	—	—	—	—	—	—	
Off-Road Equipmen	0.42 t	3.25	2.86	0.01	0.15	—	0.15	0.14	—	0.14	—	553	553	0.02	< 0.005	—	555
Dust From Material Movemen	 t				_	1.33	1.33	_	0.68	0.68	_	-	_	_	-	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	—
Off-Road Equipmen	0.08 t	0.59	0.52	< 0.005	0.03	—	0.03	0.03	—	0.03	—	91.6	91.6	< 0.005	< 0.005	—	91.9
Dust From Material Movemen	 t					0.24	0.24		0.12	0.12	_	_	_	_	_	_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_		_		_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	—	_	_	_	_	_	_	_	_	—	—	_	—	_		—	—
Worker	0.16	0.16	2.52	0.00	0.00	0.59	0.59	0.00	0.14	0.14	—	597	597	0.01	0.02	2.26	606
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.26	15.1	6.70	0.08	0.16	3.23	3.39	0.16	0.91	1.06	—	12,454	12,454	1.01	2.02	26.2	13,106
Daily, Winter (Max)		_	_	_	_	_	_	_	_		_	_					
Worker	0.16	0.18	2.18	0.00	0.00	0.59	0.59	0.00	0.14	0.14	—	568	568	0.01	0.02	0.06	575
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.25	15.7	6.76	0.08	0.16	3.23	3.39	0.16	0.91	1.06	—	12,458	12,458	1.01	2.02	0.68	13,084
Average Daily	-	-	-	-	-	—	—	-	-	-	-	-	—	—	—	—	—
Worker	0.02	0.02	0.31	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	77.4	77.4	< 0.005	< 0.005	0.13	78.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.03	2.13	0.90	0.01	0.02	0.43	0.45	0.02	0.12	0.14	_	1,672	1,672	0.14	0.27	1.53	1,758
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.06	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	12.8	12.8	< 0.005	< 0.005	0.02	13.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	0.39	0.16	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.03	_	277	277	0.02	0.04	0.25	291

3.4. Earthworks B (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	_	-	-	_	-	-	-	_	—	_	_	_	_	_	_
Daily, Summer (Max)		_		—	—	—	_	—	_		_						_
Off-Road Equipmer	3.10 t	24.2	21.3	0.05	1.12	_	1.12	1.03	_	1.03	_	4,121	4,121	0.17	0.03		4,135

Dust From Material Movemen	 t		—			2.57	2.57		1.32	1.32						_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_		_		_							_				—	
Off-Road Equipmen	3.10 t	24.2	21.3	0.05	1.12	—	1.12	1.03	_	1.03	—	4,121	4,121	0.17	0.03	_	4,135
Dust From Material Movemen	 t					2.57	2.57		1.32	1.32						_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_		—	—	_	—	_	_	—	_		_		_	_	_	_
Off-Road Equipmen	0.42 t	3.25	2.86	0.01	0.15	—	0.15	0.14	_	0.14	—	553	553	0.02	< 0.005	—	555
Dust From Material Movemen	 t					0.35	0.35		0.18	0.18						_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	—	_	_	_	_	_	_	—	_	_	_	_
Off-Road Equipmen	0.08 t	0.59	0.52	< 0.005	0.03	—	0.03	0.03	_	0.03	—	91.6	91.6	< 0.005	< 0.005	—	91.9
Dust From Material Movemen	 t					0.06	0.06		0.03	0.03							
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_

Daily, Summer (Max)		—	_														
Worker	0.16	0.16	2.52	0.00	0.00	0.59	0.59	0.00	0.14	0.14	—	597	597	0.01	0.02	2.26	606
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.26	15.1	6.70	0.08	0.16	3.23	3.39	0.16	0.91	1.06	—	12,454	12,454	1.01	2.02	26.2	13,106
Daily, Winter (Max)		—	—														
Worker	0.16	0.18	2.18	0.00	0.00	0.59	0.59	0.00	0.14	0.14	—	568	568	0.01	0.02	0.06	575
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.25	15.7	6.76	0.08	0.16	3.23	3.39	0.16	0.91	1.06	—	12,458	12,458	1.01	2.02	0.68	13,084
Average Daily	—	-	-	—	_	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.02	0.02	0.31	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	77.4	77.4	< 0.005	< 0.005	0.13	78.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.03	2.13	0.90	0.01	0.02	0.43	0.45	0.02	0.12	0.14	_	1,672	1,672	0.14	0.27	1.53	1,758
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.06	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	12.8	12.8	< 0.005	< 0.005	0.02	13.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	0.39	0.16	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.03	_	277	277	0.02	0.04	0.25	291

3.5. Building Construction A (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	_	-	—	_	—	-	-	_	_	_	_	_	_	_	—
Daily, Summer (Max)		_		—	_	_	—	—	—	_							
Off-Road Equipmer	1.14 t	10.3	11.1	0.02	0.43	_	0.43	0.40	-	0.40		2,436	2,436	0.10	0.02		2,444

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		—		_				_	—	_							
Off-Road Equipmen	1.14 t	10.3	11.1	0.02	0.43	_	0.43	0.40	_	0.40	—	2,436	2,436	0.10	0.02	—	2,444
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	—	—	_	_	—	_	_	—			—	—		—	
Off-Road Equipmen	0.51 t	4.60	4.96	0.01	0.19	_	0.19	0.18	_	0.18		1,088	1,088	0.04	0.01	—	1,091
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	_	_	-	-	-	_	_	_	—	_	_	-	—	-	_
Off-Road Equipmen	0.09 t	0.84	0.91	< 0.005	0.04	_	0.04	0.03	-	0.03	—	180	180	0.01	< 0.005	—	181
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	—	—	-	-	-	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_	_	-	-	_	_	-	_	-			_	_		_	—
Worker	0.04	0.04	0.57	0.00	0.00	0.13	0.13	0.00	0.03	0.03	_	134	134	< 0.005	< 0.005	0.51	136
Vendor	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	129	129	0.01	0.02	0.35	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_		-				_	_	-			_	_		_	
Worker	0.04	0.04	0.49	0.00	0.00	0.13	0.13	0.00	0.03	0.03	_	128	128	< 0.005	< 0.005	0.01	129
Vendor	< 0.005	0.14	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	_	129	129	0.01	0.02	0.01	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	_		_	-		_	_			_			_				
Worker	0.02	0.02	0.23	0.00	0.00	0.06	0.06	0.00	0.01	0.01	—	57.8	57.8	< 0.005	< 0.005	0.10	58.6
Vendor	< 0.005	0.06	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	—	57.7	57.7	< 0.005	0.01	0.07	60.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	9.58	9.58	< 0.005	< 0.005	0.02	9.70
Vendor	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	9.55	9.55	< 0.005	< 0.005	0.01	9.97
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.6. Building Construction A (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)				_	_	_	_	_	_		_		_				—
Off-Road Equipmen	1.14 t	10.3	11.1	0.02	0.43	-	0.43	0.40	-	0.40	-	2,436	2,436	0.10	0.02	_	2,444
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)					_	_	-	_			_						
Off-Road Equipmen	1.14 t	10.3	11.1	0.02	0.43	-	0.43	0.40	—	0.40	—	2,436	2,436	0.10	0.02		2,444
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	—	_	_	_	_	_	_	—	_	—	_	_	—	—	_
Off-Road Equipmen	0.51 t	4.60	4.96	0.01	0.19	_	0.19	0.18	_	0.18	_	1,088	1,088	0.04	0.01	_	1,091

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.09 t	0.84	0.91	< 0.005	0.04		0.04	0.03		0.03		180	180	0.01	< 0.005	_	181
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—							_									
Worker	0.04	0.04	0.57	0.00	0.00	0.13	0.13	0.00	0.03	0.03	—	134	134	< 0.005	< 0.005	0.51	136
Vendor	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	129	129	0.01	0.02	0.35	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		—		—	—			_	—	—	—	_		—	_	—	—
Worker	0.04	0.04	0.49	0.00	0.00	0.13	0.13	0.00	0.03	0.03	—	128	128	< 0.005	< 0.005	0.01	129
Vendor	< 0.005	0.14	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	129	129	0.01	0.02	0.01	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_		_												_	_
Worker	0.02	0.02	0.23	0.00	0.00	0.06	0.06	0.00	0.01	0.01	—	57.8	57.8	< 0.005	< 0.005	0.10	58.6
Vendor	< 0.005	0.06	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	—	57.7	57.7	< 0.005	0.01	0.07	60.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—		—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	9.58	9.58	< 0.005	< 0.005	0.02	9.70
Vendor	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	9.55	9.55	< 0.005	< 0.005	0.01	9.97
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction B (2025) - Unmitigated

Criteria Pollutants	(lb/day f	for daily, ton/	vr for annual) and GHGs ((lb/day f	for daily	. MT/	vr for annual)
	· · · · · /	, ,				/	, .	

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	—	—	—	—	—	-	—	—	_	-	—	—	_	—
Daily, Summer (Max)			—	-	—	—	—	—	_	_	—			_	_		
Daily, Winter (Max)			_	-		_	_	_	_		_						—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily			—	_	—	—	—	—	—	—	—		—	—	—		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	—	-	—	—	—	-	—	—	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)			-	-	_	—	—	-	-	_	—		_	_	-		
Daily, Winter (Max)		_	—	-	_	—	—	—	_	—	—			—	—		
Worker	0.04	0.04	0.49	0.00	0.00	0.13	0.13	0.00	0.03	0.03	_	128	128	< 0.005	< 0.005	0.01	129
Vendor	< 0.005	0.14	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	_	129	129	0.01	0.02	0.01	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	-	-	—	-	-	-	-	—	-	_	_	—	—	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.28	2.28	< 0.005	< 0.005	< 0.005	2.31
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.28	2.28	< 0.005	< 0.005	< 0.005	2.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	_	—	—	_	—	_	_	_	—	_	_	—	—	—	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.38	0.38	< 0.005	< 0.005	< 0.005	0.38
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.38	0.38	< 0.005	< 0.005	< 0.005	0.39
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.8. Building Construction B (2025) - Mitigated

		· · ·															
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_
Daily, Summer (Max)	-	_	_	-	-	-	_	-	-	-	-	-	-	-	_	_	-
Daily, Winter (Max)	—	_	_	_	-	_	_	-	-	-	-	_	-	-	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—		_	_	_	_	_	_	_	_	_		_	_	_	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	-	-	-	_	-	-	-	-	_	-	-	_	_	-
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.49	0.00	0.00	0.13	0.13	0.00	0.03	0.03	_	128	128	< 0.005	< 0.005	0.01	129

Vendor	< 0.005	0.14	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	129	129	0.01	0.02	0.01	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—		-	—			—		—	—					_		_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	2.28	2.28	< 0.005	< 0.005	< 0.005	2.31
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.28	2.28	< 0.005	< 0.005	< 0.005	2.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.38	0.38	< 0.005	< 0.005	< 0.005	0.38
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.38	0.38	< 0.005	< 0.005	< 0.005	0.39
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Building Construction B (2026) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	_	—	—	_	—	—	—	_	_	_	—	—	_	_	_
Daily, Summer (Max)		_	—	_	_			_						_			
Daily, Winter (Max)	_	_	—	_	_	_	_	_		_	_	_	_	_		_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—		-	—	—	—	—		—	—		—	—		—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		—															—
Daily, Winter (Max)		_							—								
Worker	0.03	0.04	0.46	0.00	0.00	0.13	0.13	0.00	0.03	0.03		125	125	< 0.005	< 0.005	0.01	127
Vendor	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01		127	127	0.01	0.02	0.01	133
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.49	1.49	< 0.005	< 0.005	< 0.005	1.51
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.49	1.49	< 0.005	< 0.005	< 0.005	1.56
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	—	—	—	—	—	—	—	—	_	—	—	—	—	_	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.25	0.25	< 0.005	< 0.005	< 0.005	0.25
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.25	0.25	< 0.005	< 0.005	< 0.005	0.26
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.10. Building Construction B (2026) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	_	—	—	—	—	—	—	—	—	_	—	—	—	—	—
Daily, Summer (Max)		_		_	_		_										
Daily, Winter (Max)		_		_	_		_										
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	—	—	—	—	—			—	—	—			—	—		—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	_	—	—	—	_	—	—	—	_	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	_	—	_	—	—	—	—	—	—	—	_	—	—
Daily, Summer (Max)																	
Daily, Winter (Max)	—	—	_						_	—			_				
Worker	0.03	0.04	0.46	0.00	0.00	0.13	0.13	0.00	0.03	0.03	—	125	125	< 0.005	< 0.005	0.01	127
Vendor	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	127	127	0.01	0.02	0.01	133
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	1.49	1.49	< 0.005	< 0.005	< 0.005	1.51
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	1.49	1.49	< 0.005	< 0.005	< 0.005	1.56
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.25	0.25	< 0.005	< 0.005	< 0.005	0.25
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.25	0.25	< 0.005	< 0.005	< 0.005	0.26
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Building Construction C (2026) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Summer (Max)			—	—	—	—	—	—	—	—	—		—	_	—		—
Daily, Winter (Max)	_			—	_	_		—		_	—				_		—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily						_	_			_	_				_		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	_																_
Daily, Winter (Max)						_	—			_	—				_		—
Worker	0.03	0.04	0.46	0.00	0.00	0.13	0.13	0.00	0.03	0.03	—	125	125	< 0.005	< 0.005	0.01	127
Vendor	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	127	127	0.01	0.02	0.01	133
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	_	_	—	—	—	_	_	—	—		_	—	—		—
Worker	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	14.3	14.3	< 0.005	< 0.005	0.02	14.5
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	14.3	14.3	< 0.005	< 0.005	0.02	14.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.36	2.36	< 0.005	< 0.005	< 0.005	2.39
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.36	2.36	< 0.005	< 0.005	< 0.005	2.47

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 0.00	0.00	0.00	0.00	0.00	0.00
•																

3.12. Building Construction C (2026) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	-	-	-	_	_	-	—	_	_	_	-	-	_	—	_
Daily, Summer (Max)	—	_	-	-	_	_	—	_	-	—	—	_	_	_	_	—	—
Daily, Winter (Max)		_	_	-	_	_	_	—	-	_	_				_	_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	—	_	—	_	_	—	—	_	_	_	—	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	-	_	—	—	—	—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—
Daily, Summer (Max)	_	-	-	-	-	_	-	_	-	-	-	_	-	-	-	-	
Daily, Winter (Max)	_	-	-	-	-	-	-	—	-	-	-	_	-	-	-	-	_
Worker	0.03	0.04	0.46	0.00	0.00	0.13	0.13	0.00	0.03	0.03	—	125	125	< 0.005	< 0.005	0.01	127
Vendor	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	_	127	127	0.01	0.02	0.01	133
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Worker	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	14.3	14.3	< 0.005	< 0.005	0.02	14.5
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	14.3	14.3	< 0.005	< 0.005	0.02	14.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	2.36	2.36	< 0.005	< 0.005	< 0.005	2.39
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.36	2.36	< 0.005	< 0.005	< 0.005	2.47
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Paving (2026) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	—	_	—	—	-	—	—	—	—	—	_	—	—	—	—
Daily, Summer (Max)	_	—	_		—	_	—	-	_								_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_		_
Off-Road Equipmen	0.68 t	6.23	8.81	0.01	0.26	—	0.26	0.24	—	0.24		1,350	1,350	0.05	0.01	—	1,355
Paving	0.13	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		-	-	_	_	-	_	-	_	_	_	_	_	_	_	_	
Off-Road Equipmen	0.02 t	0.19	0.27	< 0.005	0.01	-	0.01	0.01	-	0.01	—	40.7	40.7	< 0.005	< 0.005	—	40.8
Paving	< 0.005	—	_	_	—	_	—	_	—	_	_	—	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipmen	< 0.005 t	0.03	0.05	< 0.005	< 0.005	—	< 0.005	< 0.005	-	< 0.005	—	6.74	6.74	< 0.005	< 0.005	_	6.76
Paving	< 0.005	—	—	—	—	—	_	—	—	—	—	—	—	—	_	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	—	—	—	—	—	—	—	_	—	—	—	—	—	_	—	—
Daily, Summer (Max)		-	—	_	—	_	—	—	-								_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	—
Worker	0.07	0.07	0.91	0.00	0.00	0.26	0.26	0.00	0.06	0.06	—	248	248	< 0.005	0.01	0.02	251
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	-	—	—	-	_	—	—	—	—	—	_	—	—
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	7.57	7.57	< 0.005	< 0.005	0.01	7.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.25	1.25	< 0.005	< 0.005	< 0.005	1.27
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.14. Paving (2026) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	_	—	—	—	—	—	—	—	—	_	—	—	—	—	—

Daily, Summer (Max)	_			—	_	—		—	_	—		—		_	_	—	—
Daily, Winter (Max)					—	—				—				—	_		—
Off-Road Equipmen	0.68 t	6.23	8.81	0.01	0.26	—	0.26	0.24	—	0.24		1,350	1,350	0.05	0.01	—	1,355
Paving	0.13	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	_	_	_	—		_						_		_	
Off-Road Equipmen	0.02 t	0.19	0.27	< 0.005	0.01	—	0.01	0.01		0.01		40.7	40.7	< 0.005	< 0.005		40.8
Paving	< 0.005		_	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual			_	_	_	_		_						_	_	_	_
Off-Road Equipmen	< 0.005 t	0.03	0.05	< 0.005	< 0.005	—	< 0.005	< 0.005		< 0.005		6.74	6.74	< 0.005	< 0.005		6.76
Paving	< 0.005	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite			_	_	_	_		_						_	_	_	_
Daily, Summer (Max)										_		_			_	_	_
Daily, Winter (Max)																	
Worker	0.07	0.07	0.91	0.00	0.00	0.26	0.26	0.00	0.06	0.06		248	248	< 0.005	0.01	0.02	251
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00

Average Daily				_		_									_		
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	7.57	7.57	< 0.005	< 0.005	0.01	7.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	1.25	1.25	< 0.005	< 0.005	< 0.005	1.27
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.15. Architectural Coating (2026) - Unmitigated

Location	DOC	NOV		600			DMAOT				PCO2		СООТ		NDO	D	0020
Location	RUG	NUX	0	502	PIVITUE	PIVITUD	PIVITUT	PIVIZ.3E	PIVIZ.5D	PIVIZ.51	BCUZ	INDCU2	0021		INZU	ĸ	COZe
Onsite	—	—	—	-	—	—	—	—	-	—	—	—	—	-	—	—	—
Daily, Summer (Max)	_	_	_	_	_	—	_	_	_	_		_	—	_	_		_
Off-Road Equipmen	0.12 t	0.86	1.13	< 0.005	0.02	_	0.02	0.02	-	0.02	_	134	134	0.01	< 0.005	_	134
Architect ural Coatings	18.2	—	—	_	—	—	_	—	—	—	—	—	—	—	—	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	—	-	_	—	_	—	—	_	—	—	—	-	_		
Off-Road Equipmen	0.12 t	0.86	1.13	< 0.005	0.02	—	0.02	0.02	—	0.02	—	134	134	0.01	< 0.005		134
Architect ural Coatings	18.2	_		—	_			_	_	_				_	_		_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	—	_	—	—	—	_	_								_
Off-Road Equipmen	< 0.005 t	0.04	0.05	< 0.005	< 0.005	—	< 0.005	< 0.005	_	< 0.005		5.49	5.49	< 0.005	< 0.005		5.51
Architect ural Coatings	0.75				_	_			_	_		—			_	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	< 0.005 t	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005		< 0.005		0.91	0.91	< 0.005	< 0.005		0.91
Architect ural Coatings	0.14									_			_		_	_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	_	_	_	_	_	_	_	—	_	—	_	_	—	—	_
Daily, Summer (Max)										—		—			—	—	
Worker	0.02	0.02	0.32	0.00	0.00	0.08	0.08	0.00	0.02	0.02		79.0	79.0	< 0.005	< 0.005	0.27	80.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)																	
Worker	0.02	0.02	0.28	0.00	0.00	0.08	0.08	0.00	0.02	0.02		75.2	75.2	< 0.005	< 0.005	0.01	76.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		—	—	—		—			—	—	—	—	—	—	—	—	—

Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	3.13	3.13	< 0.005	< 0.005	< 0.005	3.17
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.52	0.52	< 0.005	< 0.005	< 0.005	0.53
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.16. Architectural Coating (2026) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	-	-	—	_	-	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_	-	_	_	_	-	-	-	_	_	_		_		—	
Off-Road Equipmen	0.12 t	0.86	1.13	< 0.005	0.02	_	0.02	0.02	_	0.02	—	134	134	0.01	< 0.005	—	134
Architect ural Coatings	9.12	_	_	_	_	_	-	-	-	_	_	_	_	_		_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	-	_	-	_	_	-	-	_	_	_	_	_		_	
Off-Road Equipmen	0.12 t	0.86	1.13	< 0.005	0.02	_	0.02	0.02	_	0.02	—	134	134	0.01	< 0.005	—	134
Architect ural Coatings	9.12	_	_		_	_	_	_	_							—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily		—	—	_	—	—	—	—			—		_	—	—	—	—
Off-Road Equipmen	< 0.005 t	0.04	0.05	< 0.005	< 0.005	_	< 0.005	< 0.005		< 0.005	_	5.49	5.49	< 0.005	< 0.005	—	5.51
Architect ural Coatings	0.37															—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	< 0.005 t	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005		< 0.005	—	0.91	0.91	< 0.005	< 0.005		0.91
Architect ural Coatings	0.07															_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite		_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Daily, Summer (Max)		_	_						_							_	—
Worker	0.02	0.02	0.32	0.00	0.00	0.08	0.08	0.00	0.02	0.02	—	79.0	79.0	< 0.005	< 0.005	0.27	80.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)																	—
Worker	0.02	0.02	0.28	0.00	0.00	0.08	0.08	0.00	0.02	0.02	—	75.2	75.2	< 0.005	< 0.005	0.01	76.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—		—	—		—	—	—	—	—
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005		3.13	3.13	< 0.005	< 0.005	< 0.005	3.17
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.52	0.52	< 0.005	< 0.005	< 0.005	0.53
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00

3.17. SoCalGas Pipeline Construction (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	-	-	-	—	-	-	-	-	-	_	_	-	-	-	_
Daily, Summer (Max)		_	_	-	_	-	_	-	_	_	_	_		_	_	_	_
Off-Road Equipmen	1.85 t	17.0	18.2	0.03	0.74	-	0.74	0.68	—	0.68	—	3,280	3,280	0.13	0.03	—	3,291
Dust From Material Movemen	 t					5.31	5.31		2.57	2.57							
Onsite truck	< 0.005	0.17	0.08	< 0.005	< 0.005	58.9	58.9	< 0.005	5.88	5.88	—	139	139	0.01	0.02	0.29	147
Daily, Winter (Max)		_	_	-	_	-	_	-	_	_	_	_		_	_	_	_
Off-Road Equipmen	1.85 t	17.0	18.2	0.03	0.74	-	0.74	0.68	—	0.68	—	3,280	3,280	0.13	0.03	—	3,291
Dust From Material Movemen	t					5.31	5.31		2.57	2.57							
Onsite truck	< 0.005	0.18	0.08	< 0.005	< 0.005	58.9	58.9	< 0.005	5.88	5.88	—	140	140	0.01	0.02	0.01	147
Average Daily		_	_	_	_	_	_	_	_	_	—			_	—	—	

Off-Road Equipmen	0.99 t	9.17	9.78	0.02	0.40	—	0.40	0.37	-	0.37	—	1,765	1,765	0.07	0.01	-	1,771
Dust From Material Movemen	 t	—		_	_	2.86	2.86	_	1.38	1.38	_	—	_	_	_	_	
Onsite truck	< 0.005	0.10	0.04	< 0.005	< 0.005	31.3	31.3	< 0.005	3.13	3.13	_	75.1	75.1	0.01	0.01	0.07	78.9
Annual		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	0.18 t	1.67	1.78	< 0.005	0.07	_	0.07	0.07	—	0.07	_	292	292	0.01	< 0.005	_	293
Dust From Material Movemen	 t	_		_	_	0.52	0.52	_	0.25	0.25	_	_	_	_	_	_	
Onsite truck	< 0.005	0.02	0.01	< 0.005	< 0.005	5.72	5.72	< 0.005	0.57	0.57	—	12.4	12.4	< 0.005	< 0.005	0.01	13.1
Offsite	—	_	—	-	—	—	_	-	—	—	—	_	-	—	_	—	—
Daily, Summer (Max)		—		—	-	_	—	—	—	_	—	—	—	-	_	_	
Worker	0.08	0.08	1.26	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	299	299	< 0.005	0.01	1.13	303
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	18.8	18.8	< 0.005	< 0.005	0.04	19.8
Daily, Winter (Max)		_		_	_	_	_	—	—	—	—	_	_	_	_	_	
Worker	0.08	0.09	1.09	0.00	0.00	0.29	0.29	0.00	0.07	0.07	-	284	284	< 0.005	0.01	0.03	288
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	-	18.8	18.8	< 0.005	< 0.005	< 0.005	19.7
Average Daily		—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—
Worker	0.04	0.05	0.61	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	155	155	< 0.005	0.01	0.26	157
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		10.1	10.1	< 0.005	< 0.005	0.01	10.6
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.11	0.00	0.00	0.03	0.03	0.00	0.01	0.01		25.7	25.7	< 0.005	< 0.005	0.04	26.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.67	1.67	< 0.005	< 0.005	< 0.005	1.76

3.18. SoCalGas Pipeline Construction (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	_	-	-	-	-	-	-	—	—	_	-	_	_	_	_
Daily, Summer (Max)		-		-	_	-	-	-	_	_	-		-	_	_		
Off-Road Equipmen	1.85 t	17.0	18.2	0.03	0.74	-	0.74	0.68	-	0.68	-	3,280	3,280	0.13	0.03	—	3,291
Dust From Material Movemen	 t					1.38	1.38		0.67	0.67							
Onsite truck	< 0.005	0.17	0.08	< 0.005	< 0.005	14.8	14.8	< 0.005	1.48	1.49	—	139	139	0.01	0.02	0.29	147
Daily, Winter (Max)		—	—	-	—	—	—	—	—	—	—		-	_	_		_
Off-Road Equipmen	1.85 t	17.0	18.2	0.03	0.74	-	0.74	0.68	_	0.68	-	3,280	3,280	0.13	0.03	_	3,291
Dust From Material Movemen	 t					1.38	1.38		0.67	0.67							
Onsite truck	< 0.005	0.18	0.08	< 0.005	< 0.005	14.8	14.8	< 0.005	1.48	1.49	—	140	140	0.01	0.02	0.01	147
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
								44	/ 98								

Off-Road Equipmen	0.99 t	9.17	9.78	0.02	0.40	—	0.40	0.37	-	0.37	—	1,765	1,765	0.07	0.01	-	1,771
Dust From Material Movemen	 t		-	-	_	0.74	0.74	-	0.36	0.36		—	_	—	_	_	
Onsite truck	< 0.005	0.10	0.04	< 0.005	< 0.005	7.90	7.90	< 0.005	0.79	0.79	—	75.1	75.1	0.01	0.01	0.07	78.9
Annual	_	_	—	—	—	—	_	—	—	—	_	_	—	-	—	—	—
Off-Road Equipmen	0.18 t	1.67	1.78	< 0.005	0.07	_	0.07	0.07	_	0.07	—	292	292	0.01	< 0.005	_	293
Dust From Material Movemen	 t		_	_	_	0.14	0.14	_	0.07	0.07			_	_	_	_	
Onsite truck	< 0.005	0.02	0.01	< 0.005	< 0.005	1.44	1.44	< 0.005	0.14	0.14	—	12.4	12.4	< 0.005	< 0.005	0.01	13.1
Offsite	_	_	_	—	_	—	_	-	_	—	—	—	—	—	_	—	—
Daily, Summer (Max)	_	—	—	_	_	_	—	—	_	_	_	_	_	_	_	_	_
Worker	0.08	0.08	1.26	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	299	299	< 0.005	0.01	1.13	303
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	18.8	18.8	< 0.005	< 0.005	0.04	19.8
Daily, Winter (Max)		_	_	_	_	_	_	—	_	—	_	_	_	—	_	_	_
Worker	0.08	0.09	1.09	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	284	284	< 0.005	0.01	0.03	288
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	-	18.8	18.8	< 0.005	< 0.005	< 0.005	19.7
Average Daily	_	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	—
Worker	0.04	0.05	0.61	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	155	155	< 0.005	0.01	0.26	157
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	10.1	10.1	< 0.005	< 0.005	0.01	10.6
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.11	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	25.7	25.7	< 0.005	< 0.005	0.04	26.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		1.67	1.67	< 0.005	< 0.005	< 0.005	1.76

3.19. SoCalGas Pipeline Construction (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	-	_	-	-	—	-	-	-	—	_	_	-	-	—	_
Daily, Summer (Max)				-		_	_	-	_		_	—					
Off-Road Equipmen	1.75 t	15.8	17.8	0.03	0.67	—	0.67	0.62	—	0.62	—	3,281	3,281	0.13	0.03	—	3,293
Dust From Material Movemen	 t			_		5.31	5.31	_	2.57	2.57							
Onsite truck	< 0.005	0.16	0.07	< 0.005	< 0.005	58.9	58.9	< 0.005	5.88	5.88	—	137	137	0.01	0.02	0.28	144
Daily, Winter (Max)			_	-	_	-	-	-	-	_	-	_	_	_	_		_
Off-Road Equipmen	1.75 t	15.8	17.8	0.03	0.67	-	0.67	0.62	-	0.62	-	3,281	3,281	0.13	0.03	_	3,293
Dust From Material Movemen	t			_		5.31	5.31	_	2.57	2.57							
Onsite truck	< 0.005	0.17	0.07	< 0.005	< 0.005	58.9	58.9	< 0.005	5.88	5.88	_	137	137	0.01	0.02	0.01	144
Average Daily		_	-	_	_	-	_	_	-	_	-	_	_	_	-	_	_

Off-Road Equipmen	0.62 t	5.64	6.32	0.01	0.24		0.24	0.22		0.22		1,169	1,169	0.05	0.01		1,173
Dust From Material Movemen	 t					1.89	1.89		0.91	0.91							
Onsite truck	< 0.005	0.06	0.03	< 0.005	< 0.005	20.7	20.7	< 0.005	2.07	2.07	—	48.8	48.8	< 0.005	0.01	0.04	51.3
Annual		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	0.11 t	1.03	1.15	< 0.005	0.04	_	0.04	0.04	_	0.04	_	193	193	0.01	< 0.005	_	194
Dust From Material Movemen	 t					0.35	0.35		0.17	0.17							
Onsite truck	< 0.005	0.01	< 0.005	< 0.005	< 0.005	3.78	3.78	< 0.005	0.38	0.38	—	8.08	8.08	< 0.005	< 0.005	0.01	8.49
Offsite	_	—	—	—	—	_	_	—	—	—	—	—	—	—	_	—	—
Daily, Summer (Max)					_						_			_			
Worker	0.08	0.07	1.19	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	293	293	< 0.005	0.01	1.02	297
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	18.4	18.4	< 0.005	< 0.005	0.04	19.4
Daily, Winter (Max)			_				_				_						_
Worker	0.08	0.08	1.02	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	279	279	< 0.005	0.01	0.03	282
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	18.4	18.4	< 0.005	< 0.005	< 0.005	19.4
Average Daily	_	_	—	_	—	_	_	_	_	_	—		_	—	_		—
Worker	0.03	0.03	0.38	0.00	0.00	0.10	0.10	0.00	0.02	0.02	—	101	101	< 0.005	< 0.005	0.16	102
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		6.57	6.57	< 0.005	< 0.005	0.01	6.90
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005		16.7	16.7	< 0.005	< 0.005	0.03	16.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.09	1.09	< 0.005	< 0.005	< 0.005	1.14

3.20. SoCalGas Pipeline Construction (2026) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	-	—	—	—	—	—	—	—	_	—	_	_	_	_
Daily, Summer (Max)		_	_	-	_	_	_	_	_	_	_	_	_				
Off-Road Equipmen	1.75 t	15.8	17.8	0.03	0.67	—	0.67	0.62	—	0.62	—	3,281	3,281	0.13	0.03	—	3,293
Dust From Material Movemen	 t		_	_	_	1.38	1.38		0.67	0.67			_				
Onsite truck	< 0.005	0.16	0.07	< 0.005	< 0.005	14.8	14.8	< 0.005	1.48	1.49	—	137	137	0.01	0.02	0.28	144
Daily, Winter (Max)	_	—	-	-	-	-	—	—	—	—	—		-	_	_		_
Off-Road Equipmen	1.75 t	15.8	17.8	0.03	0.67	_	0.67	0.62	_	0.62	-	3,281	3,281	0.13	0.03		3,293
Dust From Material Movemen	 t		_	_	_	1.38	1.38		0.67	0.67							
Onsite truck	< 0.005	0.17	0.07	< 0.005	< 0.005	14.8	14.8	< 0.005	1.48	1.49	-	137	137	0.01	0.02	0.01	144
Average Daily		_	_	_	_		_	_	_	_	_		_				
								48	/ 98								

Off-Road Equipmen	0.62 t	5.64	6.32	0.01	0.24		0.24	0.22		0.22		1,169	1,169	0.05	0.01		1,173
Dust From Material Movemen	 t					0.49	0.49		0.24	0.24							
Onsite truck	< 0.005	0.06	0.03	< 0.005	< 0.005	5.23	5.23	< 0.005	0.52	0.52	—	48.8	48.8	< 0.005	0.01	0.04	51.3
Annual		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	0.11 t	1.03	1.15	< 0.005	0.04	_	0.04	0.04	_	0.04	_	193	193	0.01	< 0.005	_	194
Dust From Material Movemen	 t					0.09	0.09		0.04	0.04							
Onsite truck	< 0.005	0.01	< 0.005	< 0.005	< 0.005	0.95	0.95	< 0.005	0.10	0.10	—	8.08	8.08	< 0.005	< 0.005	0.01	8.49
Offsite	_	—	—	—	—	_	_	—	—	—	—	—	—	—	_	—	—
Daily, Summer (Max)					_						_			_			
Worker	0.08	0.07	1.19	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	293	293	< 0.005	0.01	1.02	297
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	18.4	18.4	< 0.005	< 0.005	0.04	19.4
Daily, Winter (Max)			_				_				_						_
Worker	0.08	0.08	1.02	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	279	279	< 0.005	0.01	0.03	282
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	18.4	18.4	< 0.005	< 0.005	< 0.005	19.4
Average Daily	_	_	—	_	—	_	_	_	_	_	—		_	—	_		—
Worker	0.03	0.03	0.38	0.00	0.00	0.10	0.10	0.00	0.02	0.02	—	101	101	< 0.005	< 0.005	0.16	102
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.57	6.57	< 0.005	< 0.005	0.01	6.90
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	—	16.7	16.7	< 0.005	< 0.005	0.03	16.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.09	1.09	< 0.005	< 0.005	< 0.005	1.14

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	-	—	—	_	—	—	—	—	—	—	—	—	—		—
General Office Building	0.02	0.01	0.25	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.02	_	70.2	70.2	< 0.005	< 0.005	0.22	70.9
General Heavy Industry	< 0.005	0.02	0.04	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	39.9	39.9	< 0.005	< 0.005	0.20	41.1
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.02	0.04	0.29	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	—	110	110	< 0.005	< 0.005	0.42	112
Daily, Winter (Max)			_	_	_	_		_	_		_	_				_	_

General Office Building	0.02	0.02	0.22	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.02		66.8	66.8	< 0.005	< 0.005	0.01	67.3
General Heavy Industry	< 0.005	0.02	0.04	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01		39.7	39.7	< 0.005	< 0.005	0.01	40.7
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Total	0.02	0.04	0.26	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	—	106	106	< 0.005	0.01	0.01	108
Annual	_	—	—	_	—	—	—	_	—	—	—	—	—	—	—	—	—
General Office Building	< 0.005	< 0.005	0.04	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005		11.2	11.2	< 0.005	< 0.005	0.02	11.3
General Heavy Industry	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.58	6.58	< 0.005	< 0.005	0.01	6.76
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	0.01	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	_	17.8	17.8	< 0.005	< 0.005	0.03	18.1

4.1.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily,	_	—	_	_	_	_	_	_	_	—	_	—	_	_	_	_	_
Summer																	
(Max)																	

General Office Building	0.02	0.01	0.25	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.02		70.2	70.2	< 0.005	< 0.005	0.22	70.9
General Heavy Industry	< 0.005	0.02	0.04	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01		39.9	39.9	< 0.005	< 0.005	0.20	41.1
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Total	0.02	0.04	0.29	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	_	110	110	< 0.005	< 0.005	0.42	112
Daily, Winter (Max)	_	_	-	_						—			—	—	_	—	—
General Office Building	0.02	0.02	0.22	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.02		66.8	66.8	< 0.005	< 0.005	0.01	67.3
General Heavy Industry	< 0.005	0.02	0.04	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01		39.7	39.7	< 0.005	< 0.005	0.01	40.7
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Total	0.02	0.04	0.26	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03		106	106	< 0.005	0.01	0.01	108
Annual		—	—	—	—	—		_	—	—		—	—	—	—	—	—
General Office Building	< 0.005	< 0.005	0.04	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005		11.2	11.2	< 0.005	< 0.005	0.02	11.3
General Heavy Industry	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		6.58	6.58	< 0.005	< 0.005	0.01	6.76

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	0.01	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	_	17.8	17.8	< 0.005	< 0.005	0.03	18.1

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		-	_	—	-			-		—	—	—	—	_			
General Office Building		_	_	_	_			-			—	69.3	69.3	< 0.005	< 0.005		69.6
General Heavy Industry		-	_	-	-			-			_	308	308	0.02	< 0.005		309
Other Asphalt Surfaces		_	_	_	-			-			_	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt	-	_	-	-	_		-	_	_	_	0.00	0.00	0.00	0.00		0.00
Total	_	-	—	—	_	—	—	_	-	—	—	378	378	0.02	< 0.005	—	379
Daily, Winter (Max)		_	_	_	_	_		_	_	_	_	_	_	_	_		

General Office Building		_	_	_	—	—	—	_	—	—	—	69.3	69.3	< 0.005	< 0.005	—	69.6
General Heavy Industry				_								308	308	0.02	< 0.005		309
Other Asphalt Surfaces				_								0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	alt			_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	378	378	0.02	< 0.005	—	379
Annual		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Office Building			_	-	_	_	_	_	_	_	_	11.5	11.5	< 0.005	< 0.005	_	11.5
General Heavy Industry				-	_	_	_	_	_	_	_	51.0	51.0	< 0.005	< 0.005	_	51.2
Other Asphalt Surfaces			_	-	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Other Non-Asph Surfaces	 alt			_	_	_	_			_		0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	62.5	62.5	< 0.005	< 0.005	_	62.7

4.2.2. Electricity Emissions By Land Use - Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily,	_	_	_	_	—	_	_	_	—	_	_	_	_	_	_	—	_
Summer																	
(Max)																	
General Office Building			—			—		_	_			69.3	69.3	< 0.005	< 0.005		69.6
-------------------------------	---------	---	---	---	---	---	---	---	---	---	---	------	------	---------	---------	---	------
General Heavy Industry	—		—		—	_			—			308	308	0.02	< 0.005	_	309
Other Asphalt Surfaces	—		—	—		—		—	—	—		0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	—	—	—	—	—	—	—	—	—	—	378	378	0.02	< 0.005	_	379
Daily, Winter (Max)	_	—	_	_	—	_	_	—	_	_	_	—	—	_	_	_	—
General Office Building	—		—			_			—			69.3	69.3	< 0.005	< 0.005	_	69.6
General Heavy Industry			—			—			_		_	308	308	0.02	< 0.005		309
Other Asphalt Surfaces			—	—		—			_	—		0.00	0.00	0.00	0.00	_	0.00
Other Non-Asph Surfaces	 alt			—		—	—		_		—	0.00	0.00	0.00	0.00	—	0.00
Total	_	—	—	—	—	—	—	—	—	—	—	378	378	0.02	< 0.005		379
Annual	_	—	—		—	—		—	_	_	—	—	—	—	—	_	—
General Office Building	_	—	—	—	—	_	—	—	—	_	_	11.5	11.5	< 0.005	< 0.005	_	11.5
General Heavy Industry			_			_		_	_			51.0	51.0	< 0.005	< 0.005		51.2

Other Asphalt Surfaces	_			—	—		—		_	—		0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt	_					_			_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_		62.5	62.5	< 0.005	< 0.005	_	62.7

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																	
Daily, Summer (Max)		_	_		_	_	_	_	_	_	_						_
General Office Building	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	21.7	21.7	< 0.005	< 0.005	_	21.7
General Heavy Industry	0.01	0.25	0.21	< 0.005	0.02	_	0.02	0.02	_	0.02	_	302	302	0.03	< 0.005		303
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00		0.00	_	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	_	0.00	0.00		0.00	_	0.00	0.00	0.00	0.00		0.00
Total	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02	—	324	324	0.03	< 0.005	_	325
Daily, Winter (Max)					_	_	—	—	—	_	_						
General Office Building	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	—	< 0.005	_	21.7	21.7	< 0.005	< 0.005		21.7

General Heavy Industry	0.01	0.25	0.21	< 0.005	0.02	_	0.02	0.02		0.02		302	302	0.03	< 0.005	_	303
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	_	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Total	0.01	0.27	0.23	< 0.005	0.02	_	0.02	0.02	_	0.02	_	324	324	0.03	< 0.005	_	325
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	-	3.59	3.59	< 0.005	< 0.005	-	3.60
General Heavy Industry	< 0.005	0.05	0.04	< 0.005	< 0.005		< 0.005	< 0.005	-	< 0.005	-	50.1	50.1	< 0.005	< 0.005	-	50.2
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00		0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00		0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	< 0.005	0.05	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	53.7	53.7	< 0.005	< 0.005	_	53.8

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)					_		_	_									
General Office Building	< 0.005	0.02	0.02	< 0.005	< 0.005	—	< 0.005	< 0.005	_	< 0.005	—	21.7	21.7	< 0.005	< 0.005		21.7

General Heavy Industry	0.01	0.25	0.21	< 0.005	0.02	—	0.02	0.02	—	0.02		302	302	0.03	< 0.005	_	303
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00		0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	—	0.00	0.00		0.00		0.00	0.00	0.00	0.00	—	0.00
Total	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02	_	324	324	0.03	< 0.005	—	325
Daily, Winter (Max)	—	_	_	_	_	_	_						_	_	_	—	
General Office Building	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005		< 0.005		21.7	21.7	< 0.005	< 0.005	_	21.7
General Heavy Industry	0.01	0.25	0.21	< 0.005	0.02		0.02	0.02		0.02		302	302	0.03	< 0.005	—	303
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00		0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00		0.00	0.00		0.00		0.00	0.00	0.00	0.00		0.00
Total	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	-	0.02	—	324	324	0.03	< 0.005	—	325
Annual	_	—	—	—	—	—	—	—	_	_	_	—	—	—	—	—	_
General Office Building	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005		3.59	3.59	< 0.005	< 0.005		3.60
General Heavy Industry	< 0.005	0.05	0.04	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005		50.1	50.1	< 0.005	< 0.005		50.2
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00		0.00	_	0.00	0.00	0.00	0.00	—	0.00

Other	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Non-Asph Surfaces	alt																
Total	< 0.005	0.05	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	53.7	53.7	< 0.005	< 0.005	—	53.8

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	-	—	—	—	—	—	—	_	—	—	—	—	—	—
Consum er Products	0.54	—	—	_	—	—	—	—	_	_	_	_	_	—	_	_	_
Architect ural Coatings	0.07	—	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.18	0.01	1.07	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	_	4.42	4.42	< 0.005	< 0.005		4.44
Total	0.79	0.01	1.07	< 0.005	< 0.005	—	< 0.005	< 0.005	_	< 0.005	-	4.42	4.42	< 0.005	< 0.005	_	4.44
Daily, Winter (Max)			_	-	_		_				_						_
Consum er Products	0.54		_	-	_		—				_						—
Architect ural Coatings	0.07	_	_	_			_				_						
Total	0.62	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Consum Products	0.10					 		 							
Architect ural Coatings	0.01			_		 		 			—		_	—	
Landsca pe Equipme nt	0.02	< 0.005	0.13	< 0.005	< 0.005	 < 0.005	< 0.005	 < 0.005		0.50	0.50	< 0.005	< 0.005		0.50
Total	0.13	< 0.005	0.13	< 0.005	< 0.005	 < 0.005	< 0.005	 < 0.005	_	0.50	0.50	< 0.005	< 0.005		0.50

4.3.2. Mitigated

Source	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		-		-						—	_	—		_			
Consum er Products	0.50	_	—	_	_	_	—	_	_	—	_	_	_	_	_	_	_
Architect ural Coatings	0.04	_		-							_			_			
Landsca pe Equipme nt	0.18	0.01	1.07	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	_	4.42	4.42	< 0.005	< 0.005		4.44
Total	0.72	0.01	1.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	4.42	4.42	< 0.005	< 0.005	—	4.44
Daily, Winter (Max)		_		-							_			_			
Consum er Products	0.50	-		-							_			_	_		

Architect ural Coatings	0.04	—					—				—	—	_			—	—
Total	0.54	—	—	—	—	—	—	—	—	_	—	—	—	_	_	—	—
Annual	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	—	—
Consum er Products	0.09						_				—					—	—
Architect ural Coatings	0.01						_				—					—	—
Landsca pe Equipme nt	0.02	< 0.005	0.13	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005		0.50	0.50	< 0.005	< 0.005		0.50
Total	0.12	< 0.005	0.13	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.50	0.50	< 0.005	< 0.005	_	0.50

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Land Use	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)			—		—		—	-									—
General Office Building								_			0.91	4.71	5.62	0.09	< 0.005		8.63
General Heavy Industry				-	-	_	—	-	_		9.77	50.6	60.3	1.00	0.02		92.7
Other Asphalt Surfaces				-	-	_		-	_		0.00	0.00	0.00	0.00	0.00		0.00

Other Non-Aspha Surfaces	 alt					_					0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	—	—	_	—	_	—	—		10.7	55.3	66.0	1.10	0.03	_	101
Daily, Winter (Max)	—		_	_	_	_	_	_	_	_			_	_	_	_	_
General Office Building			_		—	_	_	—	_		0.91	4.71	5.62	0.09	< 0.005	_	8.63
General Heavy Industry	_		—	_	—	_	_	—	_	_	9.77	50.6	60.3	1.00	0.02	—	92.7
Other Asphalt Surfaces	_				—	_	—	—			0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Aspha Surfaces	 alt		—	—		_	_	-	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	_	—	—	_	_	—		_	—	—	10.7	55.3	66.0	1.10	0.03	—	101
Annual	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_			_	_		_		0.15	0.78	0.93	0.02	< 0.005	_	1.43
General Heavy Industry			—			—	—	_		—	1.62	8.37	9.99	0.17	< 0.005	—	15.3
Other Asphalt Surfaces			—			—	—			—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Aspha Surfaces	 alt	—	_			_					0.00	0.00	0.00	0.00	0.00	—	0.00
Total	_	_	_	_	_	_	_	_	_	_	1.77	9.15	10.9	0.18	< 0.005	_	16.8

4.4.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Office Building			_	_	_		_			_	0.91	4.71	5.62	0.09	< 0.005		8.63
General Heavy Industry	_	—	_	_	_	—	_	_	—	_	9.77	50.6	60.3	1.00	0.02	—	92.7
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	—	—	—	—	—	—	—	—	—	—	10.7	55.3	66.0	1.10	0.03	—	101
Daily, Winter (Max)			_	_									—				_
General Office Building	_	_	_	_	_		_	_		_	0.91	4.71	5.62	0.09	< 0.005	_	8.63
General Heavy Industry	—		_	_							9.77	50.6	60.3	1.00	0.02		92.7
Other Asphalt Surfaces			_								0.00	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt		—	—							0.00	0.00	0.00	0.00	0.00		0.00
Total	_	_	_	_	_	_	_	_	_	_	10.7	55.3	66.0	1.10	0.03	_	101

Annual	_	_	_	_	—	 —	 _	_	_	_	_	_	_	—	_
General Office Building		_	_		_	 —	 _		0.15	0.78	0.93	0.02	< 0.005	—	1.43
General Heavy Industry		—	—			 	 		1.62	8.37	9.99	0.17	< 0.005	—	15.3
Other Asphalt Surfaces						 _	 		0.00	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt					 	 		0.00	0.00	0.00	0.00	0.00		0.00
Total		_	_	_	—	 —	 _		1.77	9.15	10.9	0.18	< 0.005	—	16.8

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—				—	—	—	—			—						
General Office Building	—							_			1.34	0.00	1.34	0.13	0.00		4.68
General Heavy Industry	_			_	_	_		_			14.7	0.00	14.7	1.47	0.00		51.5
Other Asphalt Surfaces								_			0.00	0.00	0.00	0.00	0.00		0.00

Other Non-Asph Surfaces	 alt	_			—		_		—	_	0.00	0.00	0.00	0.00	0.00		0.00
Total	_	_	—	—	_	—	_	—	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Daily, Winter (Max)	_		—			—	_	—			—	—	—	—		—	
General Office Building	_	_	—	_	_	_	_	_	_	_	1.34	0.00	1.34	0.13	0.00	_	4.68
General Heavy Industry	_						—			—	14.7	0.00	14.7	1.47	0.00		51.5
Other Asphalt Surfaces	—		—			—	_	—			0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt			—			_	-	—		0.00	0.00	0.00	0.00	0.00	—	0.00
Total		—	—	—	—	—		—	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Annual	_	—	—	_	—	—	_	—	—	—	—	—	—	—	_	—	_
General Office Building	_				—		—				0.22	0.00	0.22	0.02	0.00		0.78
General Heavy Industry				—			_	_			2.44	0.00	2.44	0.24	0.00	—	8.53
Other Asphalt Surfaces							_				0.00	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt	—			—						0.00	0.00	0.00	0.00	0.00		0.00
Total	_	_	_	_	_	_	_	_	_	_	2.66	0.00	2.66	0.27	0.00	_	9.31

4.5.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	-	—		—	—	—	—	—	—	—	—	—	—	—
General Office Building				_	_				_	_	1.34	0.00	1.34	0.13	0.00		4.68
General Heavy Industry	—	_	_	_	_	_	_	_	_	_	14.7	0.00	14.7	1.47	0.00	_	51.5
Other Asphalt Surfaces		_	_	_	_		_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Non-Asph Surfaces	alt			_	_			_	_	_	0.00	0.00	0.00	0.00	0.00		0.00
Total	—	—	—	—	—	—	—	-	—	—	16.1	0.00	16.1	1.61	0.00	—	56.2
Daily, Winter (Max)		_	—	-	_		_	—	—	—	_	—	—	—	_	_	—
General Office Building		_	_	_	_		_	_	_	_	1.34	0.00	1.34	0.13	0.00	_	4.68
General Heavy Industry				_	_			_	_	_	14.7	0.00	14.7	1.47	0.00		51.5
Other Asphalt Surfaces				_	_		_	_	_	_	0.00	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt			_	_				_	_	0.00	0.00	0.00	0.00	0.00		0.00
Total		_	_	_	_	_	_	_	_	_	16.1	0.00	16.1	1.61	0.00	_	56.2

Annual	_	_	_	_	—	—	_	_	_	_	_	_	_	_	_	_	_
General Office Building						_			_		0.22	0.00	0.22	0.02	0.00		0.78
General Heavy Industry				—		_			—		2.44	0.00	2.44	0.24	0.00	—	8.53
Other Asphalt Surfaces						_					0.00	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt										0.00	0.00	0.00	0.00	0.00		0.00
Total	_	_	_	_	—	—		_			2.66	0.00	2.66	0.27	0.00	_	9.31

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_		—	_	_	—	-		—	_				—	_	
General Office Building		_		_	-		_	-			_					0.01	0.01
General Heavy Industry		_		_	-	_	_	-		_	_		_	_		5.74	5.74
Total	—	—	—	-	_	—	—	—	-	—	-	—	—	-	—	5.74	5.74
Daily, Winter (Max)	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	—

General Office Building	_	_	_	_	_	_	_			_	_	_	_	_	_	0.01	0.01
General Heavy Industry	_	—	_	_	—	_	—	_	—	_	—	_	—	—	—	5.74	5.74
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	5.74	5.74
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Office Building														_	_	< 0.005	< 0.005
General Heavy Industry				_												0.95	0.95
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.95	0.95

4.6.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	—	_			-	_		-					_	—
General Office Building		-	_		_			_	_		_		—			0.01	0.01
General Heavy Industry		_	_	_	_			_	_		_					5.74	5.74
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5.74	5.74
Daily, Winter (Max)		-	_	_	_			_	_		_					_	

General Office Building	—					—	—				—	—	—	—		0.01	0.01
General Heavy Industry						_										5.74	5.74
Total	—	—	—	—	—	—	—	—	—	_	—	—	—	_	_	5.74	5.74
Annual	—	—	—	—	—	—	—	—	—	_	—	—	—	_	_	—	—
General Office Building						_										< 0.005	< 0.005
General Heavy Industry	_															0.95	0.95
Total	_	_	_	_	_	_	_	_			_	_	_	_		0.95	0.95

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme nt Type	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	—	_	—		—	_	_		-	—	_	_		_	—
Total	_	—	_	—	_	_	_	—	—	_	—	—	—	—	_	_	—
Daily, Winter (Max)		_	_	-				_	_		-	_					_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	

4.7.2. Mitigated

Equipme nt Type	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	_		—	—	—	—	_	—	—	—	_		—	_	—	_	
Daily, Winter (Max)			-	_	_	_		_									
Total	—	—	—	—	—	—	—	—	-	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme nt Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	—	—	—		_		—	_		_	—		_		—
Total	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	_
Daily, Winter (Max)	_							_		_							
Total	-	_	_	_	_	_	_	_	—	-	_	_	_	_	_	—	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Total	_	_	 _	 	_	 	_	_	_	_	 _	_	_

4.8.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_		_	_	_	—	_	—	_	_	_			_	_	—	_
Total	—	—	_	_	—	_	—	—	—	_	—	—	—	—	—	—	—
Daily, Winter (Max)				-													_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_			_	_		_		_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)					_							—	—	—	—		—
Thermal Oxidizer (TOU)	4.34	25.3	57.8	124	5.16		5.16	5.16		5.16		49,508	49,508	1.59	0.16		49,595

Off-Spec Flare Pilot	0.01	0.14	0.14	< 0.005	0.01		0.01	0.01		0.01	_	281	281	0.01	< 0.005	_	281
Genset with ICE	0.11	0.70	1.17	< 0.005	0.07	-	0.07	0.07	_	0.07	-	27.8	27.8	< 0.005	< 0.005	—	27.9
Total	4.46	26.1	59.1	124	5.24	-	5.24	5.24	-	5.24	_	49,816	49,816	1.60	0.16	_	49,904
Daily, Winter (Max)		-			-			-	_		_	-		-	_	_	
Thermal Oxidizer (TOU)	4.34	25.3	57.8	124	5.16		5.16	5.16		5.16	_	49,508	49,508	1.59	0.16	—	49,595
Off-Spec Flare Pilot	0.01	0.14	0.14	< 0.005	0.01		0.01	0.01		0.01	_	281	281	0.01	< 0.005	_	281
Genset with ICE	0.11	0.70	1.17	< 0.005	0.07	-	0.07	0.07	-	0.07	-	27.8	27.8	< 0.005	< 0.005	—	27.9
Total	4.46	26.1	59.1	124	5.24	_	5.24	5.24	_	5.24	-	49,816	49,816	1.60	0.16	_	49,904
Annual	_	_	_	_	_	-	—	_	_	-	-	_	_	-	_	_	—
Thermal Oxidizer (TOU)	0.79	4.62	10.6	16.0	0.94		0.94	0.94	-	0.94	_	8,195	8,195	0.26	0.03	_	8,209
Off-Spec Flare Pilot	< 0.005	0.03	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	46.5	46.5	0.02	0.03	_	54.8
Genset with ICE	< 0.005	< 0.005	0.01	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	_	4.61	4.61	< 0.005	< 0.005		5.43
Total	0.79	4.65	10.6	16.0	0.94	_	0.94	0.94	_	0.94	_	8,246	8,246	0.28	0.05	_	8,270

4.9.2. Mitigated

Equipme	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																	
Туре																	

Daily, Summer (Max)		—	—		_											_	
Thermal Oxidizer (TOU)	4.34	25.3	57.8	124	5.16		5.16	5.16	—	5.16		49,508	49,508	1.59	0.16	_	49,595
Off-Spec Flare Pilot	0.01	0.14	0.14	< 0.005	0.01		0.01	0.01	_	0.01		281	281	0.01	< 0.005	_	281
Genset with ICE	0.11	0.70	1.17	< 0.005	0.07	—	0.07	0.07	_	0.07	_	27.8	27.8	< 0.005	< 0.005	—	27.9
Total	4.46	26.1	59.1	124	5.24	—	5.24	5.24	—	5.24	_	49,816	49,816	1.60	0.16	—	49,904
Daily, Winter (Max)	_	—	_	_	-	_	_	_	_	-		_	_	_	—	-	_
Thermal Oxidizer (TOU)	4.34	25.3	57.8	124	5.16		5.16	5.16		5.16		49,508	49,508	1.59	0.16	_	49,595
Off-Spec Flare Pilot	0.01	0.14	0.14	< 0.005	0.01		0.01	0.01		0.01		281	281	0.01	< 0.005	_	281
Genset with ICE	0.11	0.70	1.17	< 0.005	0.07	—	0.07	0.07	—	0.07	_	27.8	27.8	< 0.005	< 0.005	-	27.9
Total	4.46	26.1	59.1	124	5.24	_	5.24	5.24	_	5.24	_	49,816	49,816	1.60	0.16	_	49,904
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Thermal Oxidizer (TOU)	0.79	4.62	10.6	16.0	0.94		0.94	0.94		0.94		8,195	8,195	0.26	0.03	—	8,209
Off-Spec Flare Pilot	< 0.005	0.03	0.03	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005		46.5	46.5	0.02	0.03	_	54.8
Genset with ICE	< 0.005	< 0.005	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.61	4.61	< 0.005	< 0.005	—	5.43
Total	0.79	4.65	10.6	16.0	0.94	_	0.94	0.94	_	0.94	_	8,246	8,246	0.28	0.05	_	8,270

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)					_					_							
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)												_					_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_	_	_	—	_	_	—	_	_	_	_	—
Total	_	_	_	_	_	_	_	_	_	_		—	_	_	_	_	

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)				—	—						—			_			_
Total	—	_	_	-	—	—	_	—	—	—	—	—	—	—	_	—	—
Daily, Winter (Max)		_	_	-	-	_	_	-	_	_	_	_	_		_	_	_
Total	_	—	_	—	—	-	—	—	-	_	—	—	-	_	—	—	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_		_										—				_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered		—	-		_	_				_	—	_		_			
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	-	_	_	_	_	_	_	_	—	—	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	—	—								—						
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered		—	_	_	_	_	_	_	_	_	—	—		_		_	
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	—	—	-	—	_	_	_	_	—	_	—	—	_	—	_	—	_
Subtotal	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_
Subtotal	_	—	_	_	_	—	_	_	_	_	_	—	_	—	_	—	_

Sequest ered	—	—	—	—	—		—	—	—	—	—		—	—	_	—	—
Subtotal	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_	—	—
Remove d	—	—	—	—	—		—	_	—	—	—		_	—	—	—	
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—
_	_	_	_	_	_	_	_	_	_	_	—		_		_	—	_

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_				_		_			_				_			_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Daily, Winter (Max)																	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Annual	_		_	_	_	_	_	_	_	_	_		_	_			_
Total	_	_	_	_	_	_	_	_	_	_	_		_	_			_

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Land Use	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	_	—	—	_	_	—	—	—		_	—	—
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	—	—	—		—	—		—	—		—	—	—	—	_	—	_
Total	—	—		—	—	—	—	—	—	—	—		—	—		—	—
Annual	—	—	—	—	—	—	—	—	—	—	—		—	—		—	—
Total	_	—	_	_	_	_	_	_	_	_	—	_		—	_	—	_

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Species	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	_	—	—	—	—	_	—	—	_	_	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequest ered	_	—	_	—	_	_	_	—	_	_	_	—	—	_	_	_	—
Subtotal	_	—	—	_	_	—	_	_	_	_	—	_	_	_	—	_	—
Remove d	_	—	—	_	_	_	_	_	_	_	—	_	_	_	_		_
Subtotal	_	—	—	_	_	_	_	_	_	_	—	_	_	_	—	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)		—									—						
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	—	—	_	_	_	_	_	_	_	—	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d		_	_	_	_			_		_	_		_	_			_

Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—
Sequest ered	_	—	—	_	—	—	—	_	_		—	_	_	—	—		—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—
Remove d	_	—	—	_	—	—	—	—	_		—	—	_	—	—		—
Subtotal	_	_	—	—	_	—	_	_	_	_	—	_	_	_	_		—
_		_	—	_	_	—	_	_	_	_	—	_	_	_	_		—

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Earthworks A	Site Preparation	2/12/2025	2/26/2025	5.00	11.0	—
Earthworks B	Grading	2/27/2025	5/6/2025	5.00	49.0	_
Building Construction A	Building Construction	5/7/2025	12/19/2025	5.00	163	_
Building Construction B	Building Construction	12/23/2025	1/6/2026	5.00	11.0	_
Building Construction C	Building Construction	1/7/2026	3/4/2026	5.00	41.0	_
Paving	Paving	3/5/2026	3/19/2026	5.00	11.0	—
Architectural Coating	Architectural Coating	3/20/2026	4/9/2026	5.00	15.0	—
SoCalGas Pipeline Construction	Linear, Drainage, Utilities, & Sub-Grade	4/1/2025	7/1/2026	5.00	327	

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Earthworks A	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Earthworks A	Tractors/Loaders/Back hoes	Diesel	Average	4.00	8.00	84.0	0.37
Earthworks B	Rubber Tired Dozers	Diesel	Average	2.00	6.00	148	0.41
Earthworks B	Tractors/Loaders/Back hoes	Diesel	Average	2.00	6.00	84.0	0.37
Earthworks B	Cement and Mortar Mixers	Diesel	Average	1.00	6.00	367	0.40
Earthworks B	Sweepers/Scrubbers	Diesel	Average	1.00	6.00	36.0	0.46
Earthworks B	Dumpers/Tenders	Diesel	Average	10.0	6.00	16.0	0.38
Earthworks B	Off-Highway Trucks	Diesel	Average	1.00	6.00	376	0.38
Earthworks B	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Building Construction A	Cranes	Diesel	Average	2.00	6.00	367	0.29
Building Construction A	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction A	Tractors/Loaders/Back hoes	Diesel	Average	1.00	6.00	14.0	0.74
Building Construction A	Aerial Lifts	Diesel	Average	1.00	6.00	84.0	0.37
Building Construction A	Off-Highway Trucks	Diesel	Average	1.00	6.00	46.0	0.45
Paving	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Paving	Pavers	Diesel	Average	1.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	6.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	6.00	36.0	0.38
Paving	Cement and Mortar Mixers	Diesel	Average	2.00	6.00	10.0	0.56

Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48
SoCalGas Pipeline Construction	Bore/Drill Rigs	Diesel	Average	1.00	6.00	83.0	0.50
SoCalGas Pipeline Construction	Excavators	Diesel	Average	1.00	6.00	36.0	0.38
SoCalGas Pipeline Construction	Rubber Tired Dozers	Diesel	Average	1.00	6.00	367	0.40
SoCalGas Pipeline Construction	Tractors/Loaders/Back hoes	Diesel	Average	1.00	6.00	84.0	0.37
SoCalGas Pipeline Construction	Cranes	Diesel	Average	1.00	6.00	367	0.29
SoCalGas Pipeline Construction	Graders	Diesel	Average	1.00	6.00	148	0.41
SoCalGas Pipeline Construction	Other General Industrial Equipment	Diesel	Average	1.00	6.00	35.0	0.34
SoCalGas Pipeline Construction	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48
SoCalGas Pipeline Construction	Other Construction Equipment	Diesel	Average	1.00	6.00	82.0	0.42

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Earthworks A	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Earthworks A	Tractors/Loaders/Back hoes	Diesel	Average	4.00	8.00	84.0	0.37
Earthworks B	Rubber Tired Dozers	Diesel	Average	2.00	6.00	148	0.41
Earthworks B	Tractors/Loaders/Back hoes	Diesel	Average	2.00	6.00	84.0	0.37
Earthworks B	Cement and Mortar Mixers	Diesel	Average	1.00	6.00	367	0.40
Earthworks B	Sweepers/Scrubbers	Diesel	Average	1.00	6.00	36.0	0.46
Earthworks B	Dumpers/Tenders	Diesel	Average	10.0	6.00	16.0	0.38

Earthworks B	Off-Highway Trucks	Diesel	Average	1.00	6.00	376	0.38
Earthworks B	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Building Construction A	Cranes	Diesel	Average	2.00	6.00	367	0.29
Building Construction A	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction A	Tractors/Loaders/Back hoes	Diesel	Average	1.00	6.00	14.0	0.74
Building Construction A	Aerial Lifts	Diesel	Average	1.00	6.00	84.0	0.37
Building Construction A	Off-Highway Trucks	Diesel	Average	1.00	6.00	46.0	0.45
Paving	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Paving	Pavers	Diesel	Average	1.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	6.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	6.00	36.0	0.38
Paving	Cement and Mortar Mixers	Diesel	Average	2.00	6.00	10.0	0.56
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48
SoCalGas Pipeline Construction	Bore/Drill Rigs	Diesel	Average	1.00	6.00	83.0	0.50
SoCalGas Pipeline Construction	Excavators	Diesel	Average	1.00	6.00	36.0	0.38
SoCalGas Pipeline Construction	Rubber Tired Dozers	Diesel	Average	1.00	6.00	367	0.40
SoCalGas Pipeline Construction	Tractors/Loaders/Back hoes	Diesel	Average	1.00	6.00	84.0	0.37
SoCalGas Pipeline Construction	Cranes	Diesel	Average	1.00	6.00	367	0.29
SoCalGas Pipeline Construction	Graders	Diesel	Average	1.00	6.00	148	0.41
SoCalGas Pipeline Construction	Other General Industrial Equipment	Diesel	Average	1.00	6.00	35.0	0.34

SoCalGas Pipeline Construction	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48
SoCalGas Pipeline Construction	Other Construction Equipment	Diesel	Average	1.00	6.00	82.0	0.42

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Earthworks A	_	_	_	—
Earthworks A	Worker	17.5	18.5	LDA,LDT1,LDT2
Earthworks A	Vendor	_	10.2	HHDT,MHDT
Earthworks A	Hauling	0.00	20.0	HHDT
Earthworks A	Onsite truck	_	_	HHDT
Earthworks B		_	_	_
Earthworks B	Worker	45.0	18.5	LDA,LDT1,LDT2
Earthworks B	Vendor		10.2	HHDT,MHDT
Earthworks B	Hauling	179	20.0	HHDT
Earthworks B	Onsite truck			HHDT
Building Construction A		_		_
Building Construction A	Worker	10.1	18.5	LDA,LDT1,LDT2
Building Construction A	Vendor	4.05	10.2	HHDT,MHDT
Building Construction A	Hauling	0.00	20.0	HHDT
Building Construction A	Onsite truck	_	_	HHDT
Building Construction B		_		
Building Construction B	Worker	10.1	18.5	LDA,LDT1,LDT2
Building Construction B	Vendor	4.05	10.2	HHDT,MHDT
Building Construction B	Hauling	0.00	20.0	HHDT
Building Construction B	Onsite truck	_	_	HHDT

Building Construction C	—	—	—	—
Building Construction C	Worker	10.1	18.5	LDA,LDT1,LDT2
Building Construction C	Vendor	4.05	10.2	HHDT,MHDT
Building Construction C	Hauling	0.00	20.0	HHDT
Building Construction C	Onsite truck	_	_	HHDT
Paving		_	_	
Paving	Worker	20.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_		HHDT
Architectural Coating		_		
Architectural Coating	Worker	6.07	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT
SoCalGas Pipeline Construction		_		
SoCalGas Pipeline Construction	Worker	22.5	18.5	LDA,LDT1,LDT2
SoCalGas Pipeline Construction	Vendor	0.00	10.2	HHDT,MHDT
SoCalGas Pipeline Construction	Hauling	0.27	20.0	HHDT
SoCalGas Pipeline Construction	Onsite truck	2.00	20.0	HHDT

5.3.2. Mitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Earthworks A	—	—	—	—
Earthworks A	Worker	17.5	18.5	LDA,LDT1,LDT2
Earthworks A	Vendor	—	10.2	HHDT,MHDT
Earthworks A	Hauling	0.00	20.0	HHDT
Earthworks A	Onsite truck	_	—	HHDT

Earthworks B	_	_	_	—
Earthworks B	Worker	45.0	18.5	LDA,LDT1,LDT2
Earthworks B	Vendor	_	10.2	HHDT,MHDT
Earthworks B	Hauling	179	20.0	HHDT
Earthworks B	Onsite truck	_	_	HHDT
Building Construction A	_	_	_	_
Building Construction A	Worker	10.1	18.5	LDA,LDT1,LDT2
Building Construction A	Vendor	4.05	10.2	HHDT,MHDT
Building Construction A	Hauling	0.00	20.0	HHDT
Building Construction A	Onsite truck	_	_	HHDT
Building Construction B	—	_	_	_
Building Construction B	Worker	10.1	18.5	LDA,LDT1,LDT2
Building Construction B	Vendor	4.05	10.2	HHDT,MHDT
Building Construction B	Hauling	0.00	20.0	HHDT
Building Construction B	Onsite truck	_	_	HHDT
Building Construction C	_	_	_	_
Building Construction C	Worker	10.1	18.5	LDA,LDT1,LDT2
Building Construction C	Vendor	4.05	10.2	HHDT,MHDT
Building Construction C	Hauling	0.00	20.0	HHDT
Building Construction C	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	20.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	6.07	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT

Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT
SoCalGas Pipeline Construction		_		—
SoCalGas Pipeline Construction	Worker	22.5	18.5	LDA,LDT1,LDT2
SoCalGas Pipeline Construction	Vendor	0.00	10.2	HHDT,MHDT
SoCalGas Pipeline Construction	Hauling	0.27	20.0	HHDT
SoCalGas Pipeline Construction	Onsite truck	2.00	20.0	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	37,073	12,358	9,605

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Earthworks A	0.00	0.00	10.3	0.00	_
Earthworks B	70,000	0.00	36.8	0.00	_
Paving	0.00	0.00	0.00	0.00	3.68
SoCalGas Pipeline Construction	0.00	704	0.00	0.00	—

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Office Building	0.00	0%
General Heavy Industry	0.00	0%
Other Asphalt Surfaces	0.53	100%
User Defined Linear	0.00	100%
Other Non-Asphalt Surfaces	3.14	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	532	0.03	< 0.005
2026	0.00	532	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
General Office Building	8.00	8.00	8.00	2,920	108	108	108	39,373
General Heavy Industry	2.00	2.00	2.00	730	27.0	27.0	27.0	9,843
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
General Office Building	8.00	8.00	8.00	2,920	108	108	108	39,373
General Heavy Industry	2.00	2.00	2.00	730	27.0	27.0	27.0	9,843
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Non-Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	37,073	12,358	9,605

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
General Office Building	47,580	532	0.0330	0.0040	67,675
General Heavy Industry	211,472	532	0.0330	0.0040	943,569
Other Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00
Other Non-Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
General Office Building	47,580	532	0.0330	0.0040	67,675
General Heavy Industry	211,472	532	0.0330	0.0040	943,569
Other Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00
Other Non-Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
General Office Building	474,549	0.00
General Heavy Industry	5,097,906	0.00

Other Asphalt Surfaces	0.00	0.00
Other Non-Asphalt Surfaces	0.00	0.00

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
General Office Building	474,549	0.00
General Heavy Industry	5,097,906	0.00
Other Asphalt Surfaces	0.00	0.00
Other Non-Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
General Office Building	2.48	_
General Heavy Industry	27.3	_
Other Asphalt Surfaces	0.00	
Other Non-Asphalt Surfaces	0.00	

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
General Office Building	2.48	
General Heavy Industry	27.3	
Other Asphalt Surfaces	0.00	_
Other Non-Asphalt Surfaces	0.00	

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
General Office Building	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
General Heavy Industry	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.14.2. Mitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
General Office Building	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
General Heavy Industry	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

5.15.2. Mitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
		3				

5.16. Stationary Sources
5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
5.16.2. Process Boilers						

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)

5.17. User Defined

Equipment Type	Fuel Type
Thermal Oxidizer (TOU)	Natural Gas
Off-Spec Flare Pilot	LFG
Genset with ICE	Natural Gas

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1.2. Mitigated

Vegetation Land Use Type Vegetation Soil Type	Initial Acres	Final Acres
---	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres
--

5.18.1.2. Mitigated

Biomass Cover Type	Initial Acres	Final Acre	98
5.18.2. Sequestration			
5.18.2.1. Unmitigated			
Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
5.18.2.2. Mitigated			

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)	
--	--

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	9.78	annual days of extreme heat
Extreme Precipitation	3.80	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	41.0	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	1	1	2
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	
AQ-Ozone	65.7
AQ-PM	55.2
AQ-DPM	65.8
Drinking Water	47.3
Lead Risk Housing	6.36
Pesticides	65.3
Toxic Releases	65.8
Traffic	55.3
Effect Indicators	
CleanUp Sites	71.6
Groundwater	39.9
Haz Waste Facilities/Generators	68.4
Impaired Water Bodies	43.8
Solid Waste	83.8
Sensitive Population	
Asthma	2.50

Cardio-vascular	5.61
Low Birth Weights	29.9
Socioeconomic Factor Indicators	
Education	13.7
Housing	23.4
Linguistic	70.3
Poverty	18.2
Unemployment	48.3

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	
Above Poverty	77.62094187
Employed	84.28076479
Median HI	92.14679841
Education	
Bachelor's or higher	94.35390735
High school enrollment	21.05735917
Preschool enrollment	62.04285898
Transportation	
Auto Access	86.34672142
Active commuting	14.52585654
Social	
2-parent households	84.25510073
Voting	66.95752598
Neighborhood	
Alcohol availability	88.92595919

Park access	28.96188887
Retail density	5.607596561
Supermarket access	46.38778391
Tree canopy	34.62081355
Housing	
Homeownership	50.58385731
Housing habitability	79.40459387
Low-inc homeowner severe housing cost burden	70.24252534
Low-inc renter severe housing cost burden	87.52726806
Uncrowded housing	65.16104196
Health Outcomes	
Insured adults	93.45566534
Arthritis	99.0
Asthma ER Admissions	98.5
High Blood Pressure	98.7
Cancer (excluding skin)	94.8
Asthma	95.7
Coronary Heart Disease	99.2
Chronic Obstructive Pulmonary Disease	99.4
Diagnosed Diabetes	98.9
Life Expectancy at Birth	84.7
Cognitively Disabled	82.5
Physically Disabled	94.1
Heart Attack ER Admissions	95.5
Mental Health Not Good	92.6
Chronic Kidney Disease	99.0
Obesity	98.0
Pedestrian Injuries	45.9

Physical Health Not Good	99.4
Stroke	99.1
Health Risk Behaviors	_
Binge Drinking	5.2
Current Smoker	88.4
No Leisure Time for Physical Activity	94.4
Climate Change Exposures	
Wildfire Risk	38.7
SLR Inundation Area	0.0
Children	17.1
Elderly	90.8
English Speaking	40.4
Foreign-born	65.9
Outdoor Workers	98.2
Climate Change Adaptive Capacity	
Impervious Surface Cover	77.7
Traffic Density	31.4
Traffic Access	23.0
Other Indices	
Hardship	10.7
Other Decision Support	
2016 Voting	74.5

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	30.0
Healthy Places Index Score for Project Location (b)	88.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No

Bowerman Power LFG, LLC (BP) - RNG Plant 9-5-2024 Detailed Report, 9/5/2024

Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Project Specific
Construction: Off-Road Equipment	Project Specific
Operations: Vehicle Data	Anticipated trip rate based on 4 additional employees
Operations: Fleet Mix	Anticipated Fleet Mix
Construction: Dust From Material Movement	Project specific

APPENDIX B – OPERATIONAL EQUIPMENT SPECIFICATIONS

PERÉNINIAL ENLERGY WEST PLAINS, MO 65775 USA	Equipr
120.0 MMBTU	Flare

Equipment Data Sheet

 Spec. #
 2125

 Sheet #
 1
 Of
 1

 By:
 Kristi Wade
 Date:
 05 April 2024

Reference Designator or Item #

Off-Spec RNG Low NOx Enclosed Flare

Quantity	1
Manufacturer or Approved Equal	PEI
Model #	FL-150-50-EN
RNG Max Capacity	120.0 MMBtu/h
RNG Min Capacity	24.0 MMBtu/h
Turn Down Ratio	5:1
Emissions Compliance Design Criteria	≤ 0.06 lb/MMBtu NOx
Temperature/Retention Time	Minimum 1400 Deg F for 0.6 Seconds
Maximum Skin Temperature	250 °F
Inlet Centerline Height	TBD
Flare Shell Height, O.D., Thickness	50', 150", 0.4375", ASTM A-36
Air Entrance Louvers	4 each – 91" w x 24" h, Automatic Controls
Flare floor, feet, manway, lift lug	ASTM-A-36
Top Ring & Shield	304L S.S.
Flare Insulation	4" Ceramic Fiber
Insulation Attachment	Inconel/SS 310 Studs & Retainers
Insulation Layers	3 ea Overlapping
Insulation Density	2" 4 lb/ft ³ and 2" 8 lb/ft ³
Inlet Nozzle Size	12" ANSI 150# Flange Pattern
Flare Burner Manifold & Associated Parts	304L S.S.
Combustion Air Blower Connected HP	< 200 HP
External Ladder	OSHA & ANSI A14.3 Standards
Manway Opening Size	24" x 24"
Flare Reference Drawing	PA-001-1363
Flare Reference Emissions Rule	SCAQMD Rule 1118.1 Other Flared Gas
COMMENTS or NOTES:	

ENGINEERING SIGNATURES	TITLE:		
designed by: date: K.WADE 4/19/24	FLAR	E TOP ASSEME	3 LY
drawn by: date: D.SMITH 4/19/24	1501	OD x 600" TA	ΥΓΓ
UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES FRACT .XX ANGLES ±1/16 ±.03 ±0°30	SIZE DWG. NO.	PA-001-1363	
MATERIAL: AS NOTED	SCALE: AS NOTED	FILE NO. PA-001-1363.dwg	SHEET 1 OF 2

PRELIMINARY PRELIMINAL FOR REVIEWING PERENNIAL ENER PERENNIAL ENER	N RGY, LLC		REDUC FROM OF	ED NGINAL ZE	
0					
LTR DESCRIPTION				DATE	APPROVED
REVISIONS					
applicable job no(s). 2125 FRB LANDFILL RNG OFF-SPEC FLARE		Æ	PERENNIAL ENERGY	1375 COU 7 WEST PL www.Pere	INTY ROAD 8690 AINS, MO 65775 ennialEnergy.com
This Drawing Contains Proprietary Data and Not in the Best Interest of Perennial Energy	May Not / LLC. A	Be Duplicated, All Ideas and Co	Copied, Reproduced or O oncepts Remain the Prope)therwise Use erty of Pere	ed In Any Manner nnial Energy LLC.
ENGINEERINGSIGNATURESDESIGNEDBY:DATE:K.WADE4/19/24DRAWNBY:DATE:D.SMITH4/19/24	TITLE:	FLARI 150'	E TOP AS OD x 600	SEME d"ta	3 LY ALL
UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES FRACT .XX ANGLES ±1/16 ±.03 ±0°30	D SIZE	DWG. NO.	PA-001-1	1363	
MATERIAL: AS NOTED	SC ALE	: AS NOTED	FILE NO. PA-001-13	363.dwg	SHEET 2 OF 2

Equipment Data Sheet

Job # 2126-TOU Sheet #

1 Of 1

By:

Kristi Wade

14 May 2024

Date:

Reference Designator or Item #

Oxidizer

TOU

Quantity	1		
Manufacturer or Approved Equal	PEI		
Model #	FL-108X76-50-TP		
Max Heat Rate	32.9 MMBtu/h @ 1,050 Btu/scf HHV		
Min Heat Rate	6.58 MMBtu/h @ 1,050 Btu/scf HHV		
Turn Down Ratio	5:1		
Emissions Compliance Design Criteria NG Supplemental Fuel Burner only	0.024 lb/MMBtu NOx, 1000 PPM CO		
Emissions Compliance Design Criteria NG	0.035lb/MMBtu NOx, 0.08 lb/MMBtu CO		
Supplemental Fuel Burner with Process Gas	0.006 lb/MMBtu VOC		
Temperature/Retention Time	1400 Deg F for 0.6 Seconds		
Maximum Skin Temperature	250 °F		
Inlet Centerline Height	TBD		
TOU Shell Height, O.D., Thickness	<mark>50',</mark> 108" x 76", 3/8", ASTM A-36		
Air Entrance Louvers	4 each, Automatic Controls		
TOU floor, feet, manway, lift lug	ASTM-A-36		
Top Ring & Shield	SS 304L		
TOU Insulation	4" Ceramic Fiber		
Insulation Attachment	Inconel Studs & Retainers		
Insulation Layers	3 ea Overlapping		
Insulation Density	2" 4 lb/ft ³ and 2" 8 lb/ft ³		
Inlet Nozzle Size	10" (Waste Stream 1), 6" (Waste Stream 2), 3" (Natural Gas Stream) ANSI 150# Flange Pattern		
TOU Burner Manifold & Associated Parts	304L SS		
External Ladder & Fall Arrest Assembly	OSHA §1910.29 (D) (i) & ANSI A14.3 Standards		
Manway Opening Size	36" x 36"		
TOU Reference Drawings	PA-001-1380, ME-009-0667		
TOU Reference Emissions Rule	SCAQMD Rule 1147		

COMMENTS or NOTES:

NOX emission rates are exclusive of fixed nitrogen in the fuel or injected in condensate, leachate, or other sources. Design assumes, the gas quality will have less than 2% O2, less than 1500 ppmv of H2S, 0 ppmv NH3, and 0% H. If gas constituents are more than the above, please contact Perennial Energy to discuss options and/or changes to the quoted equipment.

Please note: Mineral based particulates, such as wind-blown dust or silica, can be entrained into the ambient cooling and quenching air or purge air streams and passed into the combustor. As non-combustible matter, they will be passed into the exhaust stream and will be measured as particulate emissions, but are not generated by the combustion process. Additionally, Siloxanes will burn to SiO2. PEI makes no guarantees regarding these particulates, or particulates formed from the combustion of other non-methane constituents in the gas stream.

COMMENTS or NOTES:

NOX emission rates are exclusive of fixed nitrogen in the fuel or injected in condensate, leachate, or other sources.

Please note: Mineral based particulates, such as wind-blown dust or silica, can be entrained into the ambient cooling and quenching air or purge air streams and passed into the combustor. As non-combustible matter, they will be passed into the exhaust stream and will be measured as particulate emissions, but are not generated by the combustion process. Additionally, Siloxanes will burn to SiO2. PEI makes no guarantees regarding these particulates, or particulates formed from the combustion of other non-methane constituents in the gas stream.

Design assumes, the gas quality will have less than 2% O2, less than 1500 ppmv of H2S, 0 ppmv NH3, and 0% H. If gas constituents are more than the above, please contact Perennial Energy to discuss options and/or changes to the quoted equipment.

FILE NO. PA-001-1380.dwg

SHEET 1 OF 2

SCALE: AS NOTED

MATERIAL: AS NOTED

8/2024 8:18:07 AM 0:\ACADF\2101-2150\2126 FRB Landfill RNG TOU\PA-001-1380.dwg D.SM

AP-4 $igodoldsymbol{\Theta}$ C **Ø**76 Π **Ø**108 FCV-404-FCV-401-J-BOX: F 10"150# ANSI-/ Flanged connection 90° \bigcirc °

©2024 PERENNIAL ENERGY, LLC

	MINARY			
	RELINIAL ENERGY	LLC	REDUC. FROM ORIG	INAL E
	PL			
O LTR APPLICABLE JO	DESCRIPTION	REVISIONS		DATE APPROVED
FRB LA This Drawing C Not in the Be	NDFILL RNG TOU Contains Proprietary Data and st Interest of Perennial Energy	May Not Be Duplicated LLC. All Ideas and	d, Copied, Reproduced or Ot Concepts Remain the Proper	1375 COUNTY ROAD 869 WEST PLAINS, MO 6577 www.PerennialEnergy.co herwise Used In Any Man
ENGINE DESIGNED BY: K.WADE DRAWN BY:	ERING SIGNATURES DATE: 4/18/24 DATE:	TITLE: TOL 108'	J TOP ASS 'OD x 600	EMBLY "TALL
D.SMITH UNLESS DIMENSI FRACT ±1/16	4/18/24 OTHERWISE SPECIFIED ONS ARE IN INCHES .XX ANGLES 5 ±.03 ±0°30	SIZE DWG. NO.	PA-001-1	380
		† 1		

					LEGENI	D						
T			F	lare /	THERM	IAL OXIC	IZER F	ROCES	S POINT	S		
		А			В			Н				
	PSIG	SCFM	1 % CH4	PSIG	SCFM	% CH4	PSIG	SCFM	% CH4	PSIG	SCFM	% CH4
	5–10	560- 1050	73	5–10	1025– 1450	96	1	890	40	1	375	11
)	5–10	2700	73	5–10	2000	96	1	2315	4	1	885	11
		0			0		1	2315	4	1	885	11
GAS UPGRADING PROCESS POINTS												
2			3		4		5					
4	PSIG	SCF	М % СН4	PSIG	SCFM	% CH4	PSIG	SCFM	% CH4	PSIG	SCFM	% CH4
3	110	145	0 45-53	5 100	375– 525	73	20	1444	>96	20	1444	>96
3	110	561	8 45-53	5 100	3303	73	20	2418	>96	20	2418	>96
FLARE GASES PROCESS FLOW DIAGRAM					DR	AWING	NO.					
				D	1044400 01	DNC	Facili	4		P	17	0
F	RINC	3		BOWer	rman F	i King Power I	Facili FG 1	LUC		T	1 4	
Αv	/e.			1100	06 Bee Ca	anyon Acc	ess Road	LLC I,		PR	OJECT I	NO.
n Irvin					Irvine	e, CA 9260)2				164.02	

	1		2	3		Z	1	↓	5	5		6	
D	NOTES: UNLESS OTHERWISE S 1. MAXIMUM FLOWS ARE SI SIMILAR FLOW RATIOS AI 2. AVERAGE PRODUCT FLOW SOME FLOW VARIATION IS 3. TAIL GAS COMPOSITION W AND DURING PLANT STAF CONCENTRATION CAN EXI OF TIME. 4. PRODUCT GAS SPECIFICAT TEMPERATURE: 40–120°F (3) CONSECUTIVE GC RE HIGHER HEATING VALUE CARBON DIOXIDE (CO2) HYDROGEN SULFIDE (H2: TOTAL INERTS (N2+02+(OXYGEN (N2) CONTENT: NITROGEN (N2) CONTENT: WATER (H20) CONTENT: S. CONDENSATION CONTAINS CONDENSATE FLOW RATE: 6. FEED COMPRESSOR DISCI 7. BDL IN THE MASS BALAN DETECTABLE LIMITS	SPECIFIED HOWN. RE EXPECTED IN TUR FROM THE SYSTEM I S EXPECTED. IILL VARY WITH INLET RTUIP WHEN TAIL GAS CEED 50% FOR A SH TION EADINGS BEFORE SHU (HHV): > 970 BTU/S CONTENT: <4.0% <0.20% S) CONTENT: <4.0% <0.20% F: <3.0% <7 LBS/MMSCF (<1 TRACE CO2 AND OIL : ~3,248 GPD HARGE DEW POINT: 1 CE REPRESENTS BEL	NDOWN. S SHOWN. CONCENTRATIONS METHANE ORT PERIOD T-IN SCF 4 (0.25 GR/100SCF) 47 PPM) - 70'F OW	STREAM FLOW_(SCFM) PRESSURE (PSIG) PRESSURE (PSIA)_ TEMPERATURE 'F C1_(VOL%) N2 (VOL%) CO2 (VOL%) O2 (VOL%) H2S (PPM) H2O (VOL%) HHV	(DRY BASIS) 	(WET BASIS) FEED GAS (WET BASIS) 6,000 0 14.67 100 41.98 12.72 37.36 1.21 	$\begin{array}{c} \hline 2 \\ \hline CO2 \ PSA \\ FEED \\ \hline - 5,604 \\ \hline 110 \\ \hline 124.67 \\ \hline 150 \\ \hline 44.94 \\ \hline 13.62 \\ \hline 40.00 \\ \hline 1.30 \\ \hline - 85 \\ \hline 0.14 \\ \hline 454 \\ \hline \end{array}$	3 CO2 PSA PRODUCT 3,295 100 114.67 114 73.38 23.17 	4 CO2 PSA TAIL GAS F 2,309 2 16.67 180 4.36 0.00 95.29 0.00 - 206 0.33 44	$\begin{array}{c} & 5 \\ \hline EQ \ PSA \\ \hline PRODUCT \\ \hline 2,412 \\ \hline 20 \\ \hline \\ -34.67 \\ \hline 114 \\ \hline 96.21 \\ \hline 1.90 \\ \hline \\ -0.18 \\ \hline \\ -0.$	6 EQ PSA TAIL GAS 		
С						START-UP/ OFF-SPEC TO FLARE (BY OTHERS)	CO2 PRODUCT GAS TANK T	Y OTHERS) ART-UP/ FF-SPEC 0 FLARE			EQ	START-UP/O TO FLA (BY OTH	IFF-SPEC ARE ERS)
в	L	ANDFILL GAS	FEED COMPRESSION	CHILLER GLYCOL FEED GAS COOLER	ADS VESS BU TAN	& ORBER ELS (6) & FFER <s (1)<br="">& /-201</s>	MOLEGATE PRODUCT GAS COOLER		QUILIBRIUM PSA & DSORBER ESSELS (5) & FCV-301		ECYCLE PRESSION	CT GAS COOLER	
				CONDENSATE						& BLOWDOWN	V/RECYCLE		
А								AILGAS TANK	TAIL G	AS FLOW ROLLER	4 	TAIL GAS TO FLARE (BY OTHERS)	UNLESS OTHER
	GENERAL DATA										NEXT ASSY		ALL DIMENSIONS TOLER DECIMALS .X= ±.1 .XX= ±.02 .XXX= ±.010 D0 NOT SC/
	1		2	3		Z	1	▲ _	5	5		6	

Donald Barkley

From: Sent: To: Cc: Subject: Tina Darjazanie Friday, February 2, 2024 3:14 PM Vahe Baboomian James Adams (JAdams@YorkeEngr.com); Donald Barkley FW: FRB- Bowerman RNG TOU Spec Sheet

Vahe,

Please review and let me know if this is different than before and if we need to modify the model and our report.

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services.

Tina Darjazanie, MSEnvE | Long Beach Office Senior Engineer O: (949) 248-8490 | M: (949) 324-9041 TDarjazanie@YorkeEngr.com | V-card Link

Yorke Engineering, LLC | Corporate Office 31726 Rancho Viejo Road, Suite 218, San Juan Capistrano, CA 92675 Phone: (949) 248-8490 | Fax: (949) 248-8499 www.YorkeEngr.com

Specializing in Air Quality and EH&S Services

The foregoing e-mail may contain proprietary, confidential and/or privileged information. Delivery of this message to anyone other than the intended recipient(s) is not intended to waive any confidentiality or privilege. If you have received this transmission in error, please alert the sender by reply e-mail and then delete this message and anyattachments. Thank you.

From: Matthew Unger <munger@montaukrenewables.com> Sent: Friday, February 2, 2024 3:10 PM To: Tina Darjazanie <tdarjazanie@yorkeengr.com> Subject: Fwd: FRB- Bowerman RNG TOU Spec Sheet

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

See below from PEI.

Matt Unger Senior Environmental Specialist

Phone: (412) 779-8548 Munger@montaukrenewables.com

5313 Campbells Run Road, Suite 200 Pittsburgh, PA 15205

www.montaukrenewables.com

Confidentiality Notice: The information contained in this e-mail transmittal is privileged and confidential and intended for the addressee only. If you are neither the intended recipient nor the employee or agent responsible for delivering this e-mail to the intended recipient, any disclosure of this information in any way or taking of any action in reliance on this information is strictly prohibited. If you have received this e-mail in error, please notify the person transmitting the information immediately.

From: Kristi Wade <<u>kwade@perennialenergy.com</u>> Sent: Friday, February 2, 2024 5:41:49 PM To: Matthew Unger <<u>munger@montaukrenewables.com</u>> Cc: Colby Staggs <<u>cstaggs@perennialenergy.com</u>> Subject: RE: FRB- Bowerman RNG TOU Spec Sheet

<| [NOTICE] This message originates from an outside source. DO NOT CLICK links or attachments unless the sender is trusted. | >

Matt,

If they are referring to the Auxiliary fuel, we have the revised flows below (highlighted). I wanted to send all of the following information in case they needed any clarification on our re-sizing.

	"Start-up Stream" CO2 PSA Tail Gas Stream	"Steady-State" CO2 PSA Tail Gas Stream	"Steady-State" EQ PSA Tail Gas Stream
Flow (SCFM)	1,100	2,315	885
Pressure (psig)	2.0 to 5.0 psig	2.0	3.0
Temperature (°F)	180	180	120
CH4 %	40 %	4.36 %	10.96 %
CO2 %	59.67 %	95.29 %	0.0 %
N2 %	0.0 %	0.0 %	81.30 %
02%	0.0 %	0.0 %	7.75 %
H ₂ S (PPM)	206	206	< 4
H ₂ O Content	0.33 %	0.33 %	< 147 PPM
Heat Rate at 1,050 Btu/scf HHV	27.7 MMBtu/hr	6.4 MMBtu/hr	6.1 MMBtu/hr

The **Thermal Oxidizer (TOU)** is designed for a total capacity of **32.9 MMBtu/hr** at 1,050 Btu/scf HHV. The TOU is designed to handle the above Start-up Stream from the CO2 PSA System (27.7 MMBtu/hr) and the combined "Steady State" Tail Gas streams from the CO2 PSA and EQ PSA Systems (12.5 MMBtu/hr) as well as an additional *natural gas* supplemental fuel stream of up to about **260 scfm**.

Stream Condition	The second second second	Calculated Design Case Supplemental Fuel
Description	Design TOU Heat Rate	Usage (Considering Natural Gas at 5 psig)

Start-up (Start-up Stream only for ~30 to 45 minutes, 1 hour max)	32.9 MMBtu/hr at 1,050 Btu/scf	 Assume approx. 83 scfm of natural gas, or minimum turndown of process burner (Approx. 5.2 MMBtu/hr at 1,050 Btu/scf)
Normal Operation (Both Steady State streams from the CO2 PSA Tail and EQ PSA Systems)	28.9 MMBtu/hr at 1,050 Btu/scf	- Approx. <mark>130 to 260 scfm</mark> of natural gas at 1600 to 1800 °F - Approx. 8.2 to 16.4 MMBtu/hr at 1,050 Btu/scf

	Start-up	Normal Operation (Steady State)
Total Heat Rate	32.9 MMBtu/hr at 1,050 Btu/scf	28.9 MMBtu/hr at 1,050 Btu/scf
Supplemental Fuel Usage (Considering Natural Gas at 5 psig)	5.2 MMBtu/hr at 1,050 Btu/scf	16.4 MMBtu/hr at 1,050 Btu/scf
CO2 PSA Tail Gas Stream Heat Rate	27.7 MMBtu/hr at 1,050 Btu/scf	6.4 MMBtu/hr at 1,050 Btu/scf
EQ PSA Tail Gas Stream Heat Rate	N/A	6.1 MMBtu/hr at 1,050 Btu/scf

Please let us know if you have any more questions!

Kristi Wade 417-505-7181

From: Matthew Unger <<u>munger@montaukrenewables.com</u>> Sent: Thursday, February 1, 2024 11:51 AM To: Kristi Wade <<u>kwade@perennialenergy.com</u>> Subject: FW: FRB- Bowerman RNG TOU Spec Sheet

Kristi,

Please see the email below from our permitting contractor. Do you have this information on the pilot gas?

Thank you,

Matt Unger Senior Environmental Specialist

Phone: (412) 779-8548 munger@montaukrenewables.com 5313 Campbells Run Road, Suite 200 Pittsburgh, PA 15205

www.montaukrenewables.com

Confidentiality Notice: The information contained in this e-mail transmittal is privileged and confidential and intended for the addressee only. If you are neither the intended recipient nor the employee or agent responsible for delivering this e-mail to the intended recipient, any disclosure of this information in any way or taking of any action in reliance on this information is strictly prohibited. If you have received this e-mail in error, please notify the person transmitting the information immediately.

From: Tina Darjazanie <<u>tdarjazanie@yorkeengr.com</u>> Sent: Thursday, February 1, 2024 12:41 PM To: Matthew Unger <<u>munger@montaukrenewables.com</u>> Cc: Vahe Baboomian <<u>vbaboomian@yorkeengr.com</u>> Subject: RE: FRB- Bowerman RNG TOU Spec Sheet

<| [NOTICE] This message originates from an outside source. DO NOT CLICK links or attachments unless the sender is trusted. | >

Hi Matt,

The previous TOU rated at 24.1 MMBtu/hr had a pilot gas design fuel usage between 106 -199 scfm – where we used the 199 scfm fuel usage rate to calculate emissions. Please see below based on an email from 10/02/2023.

The Thermal Oxidizer (TOU) is designed for a total capacity of 24.1 MMBtu/hr. The TOU is designed to handle the provided tail gas conditions as well as an additional *natural gas* supplemental fuel stream of up to about 199 scfm.

Stream Condition Description	Design TOU Heat Rate (Considering a HHV of 1,010 Btu/scf)	Tail Gas Heat Rate (Considering HHV of 1,010 Btu/scf)	Calculated Design Case Supplemental Fuel Usage (Considering Natural Gas at 5 psig)
Both Streams	24.1 MMBtu/hr	12.0 MMBtu/hr	- About 106 to 199 scfm of natural gas at 1600 to 1800 °F (or about 6.4 to 12.1 MMBtu/hr at 1,010 Btu/scf)

Does the revised TOU rated at 32.9 MMBtu/hr have the same pilot gas design fuel usage? If not, can you please provide the updated pilot gas fuel usage?

Thanks,

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services.

Tina Darjazanie, MSEnvE | Long Beach Office Senior Engineer O: (949) 248-8490 | M: (949) 324-9041 TDarjazanie@YorkeEngr.com | V-card Link

Donald Barkley

From:	Kristi Wade <kwade@perennialenergy.com></kwade@perennialenergy.com>
Sent:	Wednesday, April 24, 2024 2:41 PM
To:	Donald Barkley
Cc:	Vahe Baboomian
Subject:	RE: Bowerman RNG - PEI Flare/TOU Specification Clarification
Follow Up Flag:	Flag for follow up
Flag Status:	Flagged

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

Don,

Yes, I was accounting for the insulation which is 4" thick as well as a shell thickness of 3/8" on each unit. I see now that we had 7/16" thick on the off spec flare. This makes the ID of the flare 141 1/8". Please use this exhaust diameter for the off spec flare.

For the natural gas pilot, I am getting confirmation from the burner vendor for the Btu rating.

Kristi Wade 417-505-7181

From: Donald Barkley <dbarkley@yorkeengr.com> Sent: Wednesday, April 24, 2024 12:22 PM To: Kristi Wade <kwade@perennialenergy.com> Cc: Vahe Baboomian <vbaboomian@yorkeengr.com> Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

HI Kristi,

Thanks for the information. Can you clarify how the inside diameters are derived for the 150" OD Flare, with 0.4375 shell thickness, and the 76" OD TOU, with 0.375 shell thickness. Are the inside diameters accounting for insulation? If so, can you please supply the insulation thickness for the TOU and the Flare.

Also, before we run the modeling again, we just wanted to confirm that the natural gas pilot on the Flare is still rated at 100,000 BTU/hr.

Thanks, Don

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services. Don Barkley, BSMechE, PE | San Juan Capistrano Office Senior Engineer O: (949) 248-8490 | M: (949) 426-4943 DBarkley@YorkeEngr.com | V-card Link

Yorke Engineering, LLC | Corporate Office 31726 Rancho Viejo Road, Suite 218, San Juan Capistrano, CA 92675 Phone: (949) 248-8490 | Fax: (949) 248-8499 www.YorkeEngr.com

Specializing in Air Quality and EH&S Services

The foregoing e-mail may contain proprietary, confidential and/or privileged information. Delivery of this message to anyone other than the intended recipient(s) is not intended to waive any confidentiality or privilege. If you have received this transmission in error, please alert the sender by reply e-mail and then delete this message and any attachments. Thank you.

From: Kristi Wade <<u>kwade@perennialenergy.com</u>>

Sent: Tuesday, April 23, 2024 2:22 PM

To: Vahe Baboomian <<u>vbaboomian@yorkeengr.com</u>>; Colby Staggs <<u>cstaggs@perennialenergy.com</u>>; Brad Alexander <<u>balexander@perennialenergy.com</u>>

Cc: Matthew Unger <<u>Munger@montaukrenewables.com</u>>; Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; James Adams <jadams@yorkeengr.com>

Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

Vahe,

One modification to my response below. Please change the natural gas consumption on the TOU to a maximum of 280 SCFM.

Thank you!

Kristi Wade 417-505-7181

From: Kristi Wade Sent: Tuesday, April 23, 2024 3:52 PM To: 'Vahe Baboomian' <<u>vbaboomian@yorkeengr.com</u>>; Colby Staggs <<u>cstaggs@perennialenergy.com</u>>; Brad Alexander <<u>balexander@perennialenergy.com</u>> Cc: Matthew Unger <<u>Munger@montaukrenewables.com</u>>; Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; James Adams <<u>jadams@yorkeengr.com</u>> Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

Vahe,

See answers below in red. Please let me know if you have any questions.

Kristi Wade 417-505-7181

From: Vahe Baboomian <<u>vbaboomian@yorkeengr.com</u>> Sent: Monday, April 22, 2024 3:00 PM To: Kristi Wade <<u>kwade@perennialenergy.com</u>> Cc: Matthew Unger <<u>Munger@montaukrenewables.com</u>>; Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; James Adams <<u>jadams@yorkeengr.com</u>> Subject: Bowerman RNG - PEI Flare/TOU Specification Clarification

Hello Kristi,

Can you please provide us with the following information for the most recent Flare and TOU revision. Also, can you please confirm if the process flow diagram will be updated due to the Flare/TOU revisions – namely the flow rates through streams A and B?

Flare:

- Exhaust temperature and exhaust flow rate (in acfm) at the exhaust point; 150,000 acfm @ 1018 deg F .
- Please confirm if the new Flare will have an exhaust height of 50 feet. Confirmed. The flare height is 50 ft overall.
 - Please note the exhaust diameter (ID of flare) is 141 ¼" since the OD of the shell is 150".

TOU

- Exhaust temperature and exhaust flow rate (in acfm) at the exhaust point; 39,000 acfm @ 1000 deg F
- Please confirm if the new TOU will have an exhaust diameter of 76"; The OD of the TOU is 76", which makes the exhaust diameter (ID) 67 1/4".
- Supplemental fuel (natural gas) flow rate we currently have 260 scfm on file. Has this changed with the . newest revision? 260 SCFM of natural gas is correct for the TOU.

Thank you, Vahe

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services.

Vahe Baboomian, Ph.D. | San Juan Capistrano Office Scientist O: (949) 248-8490 | M: (949) 324-7764 VBaboomian@YorkeEngr.com V-card Link

Yorke Engineering, LLC | Corporate Office 31726 Rancho Viejo Road, Suite 218, San Juan Capistrano, CA 92675 Phone: (949) 248-8490 | Fax: (949) 248-8499 www.YorkeEngr.com

Specializing in Air Quality and EH&S Services

The foregoing e-mail may contain proprietary, confidential and/or privileged information Delivery of this message to anyone other than the intended recipient(s) is not intended to waive any confidentiality or privilege. If you have received this transmission in error, please alert the sender by reply e-mail and then delete this message and any attachments. Thank you,

"This message is for the designated recipient only and may contain privileged, proprietary, or otherwise private information. If you have received it in error, please notify the sender immediately and delete the original. Any other use of the email by you is prohibited."

"This message is for the designated recipient only and may contain privileged, proprietary, or otherwise private information. If you have received it in error, please notify the sender immediately and delete the original. Any other use of the email by you is prohibited."

Vahe Baboomian

From:	Kristi Wade <kwade@perennialenergy.com></kwade@perennialenergy.com>
Sent:	Thursday, April 25, 2024 3:23 PM
То:	Vahe Baboomian; Matthew Unger
Cc:	Donald Barkley; Tina Darjazanie
Subject:	RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

Vahe,

Yes, you can use the conservative estimate with a continuous pilot at 100,000 Btu/hr.

Kristi Wade 417-505-7181

From: Vahe Baboomian <vbaboomian@yorkeengr.com>
Sent: Thursday, April 25, 2024 3:33 PM
To: Matthew Unger <Munger@montaukrenewables.com>; Kristi Wade <kwade@perennialenergy.com>
Cc: Donald Barkley <dbarkley@yorkeengr.com>; Tina Darjazanie <tdarjazanie@yorkeengr.com>
Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

Hi Matt,

Yes, I was going to assume continuous operation as a conservative estimate. Just wanted to confirm the BTU/hr rating hasn't changed since there have been subtle differences in the latest flare and TOU design that need to be updated in the model.

Best, Vahe

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services.

Vahe Baboomian, Ph.D. | San Juan Capistrano Office Scientist O: (949) 248-8490 | M: (949) 324-7764 VBaboomian@YorkeEngr.com | V-card Link

Yorke Engineering, LLC | Corporate Office 31726 Rancho Viejo Road, Suite 218, San Juan Capistrano, CA 92675 Phone: (949) 248-8490 | Fax: (949) 248-8499 www.YorkeEngr.com

Specializing in Air Quality and EH&S Services

The foregoing e-mail may contain proprietary, confidential and/or privileged information. Delivery of this message to anyone other than the intended recipient(s) is not intended to waive any confidentiality or privilege. If you have received this transmission in error, please alert the sender by reply e-mail and then delete this message and any attachments. Thank you.

From: Matthew Unger <munger@montaukrenewables.com> Sent: Thursday, April 25, 2024 1:27 PM To: Vahe Baboomian <vbaboomian@yorkeengr.com>; Kristi Wade <kwade@perennialenergy.com> Cc: Donald Barkley <dbarkley@yorkeengr.com>; Tina Darjazanie <tdarjazanie@yorkeengr.com> Subject: Re: Bowerman RNG - PEI Flare/TOU Specification Clarification

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

To not delay the permit, could we assume continuous pilot as worst case scenario?

Matt Unger Southern Regional Environmental Manager

Phone: (412) 779-8548 Munger@montaukrenewables.com

5313 Campbells Run Road, Suite 200 Pittsburgh, PA 15205

www.montaukrenewables.com

Confidentiality Notice: The information contained in this e-mail transmittal is privileged and confidential and intended for the addressee only. If you are neither the intended recipient nor the employee or agent responsible for delivering this e-mail to the intended recipient, any disclosure of this information in any way or taking of any action in reliance on this information is strictly prohibited. If you have received this e-mail in error, please notify the person transmitting the information immediately.

From: Vahe Baboomian <<u>vbaboomian@yorkeengr.com</u>>

Sent: Thursday, April 25, 2024 4:25:47 PM

To: Kristi Wade <<u>kwade@perennialenergy.com</u>>

Cc: Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; Tina Darjazanie <<u>tdarjazanie@yorkeengr.com</u>>; Matthew Unger <<u>munger@montaukrenewables.com</u>>

Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

<| [NOTICE] This message originates from an outside source. DO NOT CLICK links or attachments unless the sender is trusted. | >

Hi Kristi,

Yes, we need confirmation on the pilot gas BTU/hr rating since we need to calculate the hourly and yearly emissions that come from the pilot gas.

Thanks, Vahe

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services.

Vahe Baboomian, Ph.D. | San Juan Capistrano Office Scientist O: (949) 248-8490 | M: (949) 324-7764 VBaboomian@YorkeEngr.com | V-card Link

Yorke Engineering, LLC | Corporate Office 31726 Rancho Viejo Road, Suite 218, San Juan Capistrano, CA 92675 Phone: (949) 248-8490 | Fax: (949) 248-8499 www.YorkeEngr.com

Specializing in Air Quality and EH&S Services

The foregoing e-mail may contain proprietary, confidential and/or privileged information. Delivery of this message to anyone other than the intended recipient(s) is not intended to waive any confidentiality or privilege. If you have received this transmission in error, please alert the sender by reply e-mail and then delete this message and any attachments. Thank you.

From: Kristi Wade <<u>kwade@perennialenergy.com</u>>
Sent: Thursday, April 25, 2024 12:42 PM
To: Vahe Baboomian <<u>vbaboomian@yorkeengr.com</u>>
Cc: Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; Tina Darjazanie <<u>tdarjazanie@yorkeengr.com</u>>; Matthew Unger
<<u>Munger@montaukrenewables.com</u>>
Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

Nothing back from them yet. I will let you know as soon as they respond.

Are you just needing the BTU/hr rating? There have been discussions whether we needed a continuous pilot or not. Will this make a difference in your modeling results?

Kristi Wade 417-505-7181

From: Vahe Baboomian <<u>vbaboomian@yorkeengr.com</u>> Sent: Thursday, April 25, 2024 12:56 PM To: Kristi Wade <<u>kwade@perennialenergy.com</u>> Cc: Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; Tina Darjazanie <<u>tdarjazanie@yorkeengr.com</u>>; Matthew Unger <<u>Munger@montaukrenewables.com</u>> Subject: DS: Dawarman DNC__DEL Elarg (TOUL Specification

Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

Hi Kristi,

Any updates on confirming if the natural gas pilot on the Flare is still rated at 100,000 BTU/hr? We need this confirmed to finalize our modeling results.

Vahe Baboomian

From:	Kristi Wade <kwade@perennialenergy.com></kwade@perennialenergy.com>
Sent:	Wednesday, April 24, 2024 2:41 PM
То:	Donald Barkley
Cc:	Vahe Baboomian
Subject:	RE: Bowerman RNG - PEI Flare/TOU Specification Clarification
Follow Up Flag:	Flag for follow up
Flag Status:	Flagged

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

Don,

Yes, I was accounting for the insulation which is 4" thick as well as a shell thickness of 3/8" on each unit. I see now that we had 7/16" thick on the off spec flare. This makes the ID of the flare 141 1/8". Please use this exhaust diameter for the off spec flare.

For the natural gas pilot, I am getting confirmation from the burner vendor for the Btu rating.

Kristi Wade 417-505-7181

From: Donald Barkley <dbarkley@yorkeengr.com>
Sent: Wednesday, April 24, 2024 12:22 PM
To: Kristi Wade <kwade@perennialenergy.com>
Cc: Vahe Baboomian <vbaboomian@yorkeengr.com>
Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

HI Kristi,

Thanks for the information. Can you clarify how the inside diameters are derived for the 150" OD Flare, with 0.4375 shell thickness, and the 76" OD TOU, with 0.375 shell thickness. Are the inside diameters accounting for insulation? If so, can you please supply the insulation thickness for the TOU and the Flare.

Also, before we run the modeling again, we just wanted to confirm that the natural gas pilot on the Flare is still rated at 100,000 BTU/hr.

Thanks, Don

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services. Don Barkley, BSMechE, PE | San Juan Capistrano Office Senior Engineer O: (949) 248-8490 | M: (949) 426-4943 DBarkley@YorkeEngr.com | V-card Link

Yorke Engineering, LLC | Corporate Office 31726 Rancho Viejo Road, Suite 218, San Juan Capistrano, CA 92675 Phone: (949) 248-8490 | Fax: (949) 248-8499 www.YorkeEngr.com

Specializing in Air Quality and EH&S Services

The foregoing e-mail may contain proprietary, confidential and/or privileged information. Delivery of this message to anyone other than the intended recipient(s) is not intended to waive any confidentiality or privilege. If you have received this transmission in error, please alert the sender by reply e-mail and then delete this message and any attachments. Thank you.

From: Kristi Wade <<u>kwade@perennialenergy.com</u>>

Sent: Tuesday, April 23, 2024 2:22 PM

Cc: Matthew Unger <<u>Munger@montaukrenewables.com</u>>; Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; James Adams </dd>

Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

EXTERNAL EMAIL: This email originated from outside YorkeEngr.com. Please use caution.

Vahe,

One modification to my response below. Please change the natural gas consumption on the TOU to a maximum of 280 SCFM.

Thank you!

Kristi Wade 417-505-7181

From: Kristi Wade
Sent: Tuesday, April 23, 2024 3:52 PM
To: 'Vahe Baboomian' <<u>vbaboomian@yorkeengr.com</u>>; Colby Staggs <<u>cstaggs@perennialenergy.com</u>>; Brad Alexander
<<u>balexander@perennialenergy.com</u>>
Cc: Matthew Unger <<u>Munger@montaukrenewables.com</u>>; Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; James Adams
<<u>jadams@yorkeengr.com</u>>
Subject: RE: Bowerman RNG - PEI Flare/TOU Specification Clarification

Vahe,

See answers below in red. Please let me know if you have any questions.

Kristi Wade 417-505-7181

From: Vahe Baboomian <<u>vbaboomian@yorkeengr.com</u>> Sent: Monday, April 22, 2024 3:00 PM To: Kristi Wade <<u>kwade@perennialenergy.com</u>> Cc: Matthew Unger <<u>Munger@montaukrenewables.com</u>>; Donald Barkley <<u>dbarkley@yorkeengr.com</u>>; James Adams <<u>jadams@yorkeengr.com</u>>

Subject: Bowerman RNG - PEI Flare/TOU Specification Clarification

Hello Kristi,

Can you please provide us with the following information for the most recent Flare and TOU revision. Also, can you please confirm if the process flow diagram will be updated due to the Flare/TOU revisions – namely the flow rates through streams A and B?

Flare:

- Exhaust temperature and exhaust flow rate (in acfm) at the exhaust point; 150,000 acfm @ 1018 deg F
- Please confirm if the new Flare will have an exhaust height of 50 feet. Confirmed. The flare height is 50 ft overall.
 - Please note the exhaust diameter (ID of flare) is 141 ¼" since the OD of the shell is 150".
- TOU
 - Exhaust temperature and exhaust flow rate (in acfm) at the exhaust point; 39,000 acfm @ 1000 deg F
 - Please confirm if the new TOU will have an exhaust diameter of 76"; The OD of the TOU is 76", which makes the exhaust diameter (ID) 67 ¼".
 - Supplemental fuel (natural gas) flow rate we currently have 260 scfm on file. Has this changed with the newest revision? 260 SCFM of natural gas is correct for the TOU.

Thank you, Vahe

Yorke Service Areas Include: Air Quality, Storm Water, Hazardous Waste, Industrial Hygiene-Safety, and CEQA Technical Reports. For a more detailed list: www.YorkeEngr.com/Services.

Vahe Baboomian, Ph.D. | San Juan Capistrano Office Scientist O: (949) 248-8490 | M: (949) 324-7764 VBaboomian@YorkeEngr.com | V-card Link

Yorke Engineering, LLC | Corporate Office 31726 Rancho Viejo Road, Suite 218, San Juan Capistrano, CA 92675 Phone: (949) 248-8490 | Fax: (949) 248-8499 www.YorkeEngr.com

Specializing in Air Quality and EH&S Services

The foregoing e-mail may contain proprietary, confidential and/or privileged information. Delivery of this message to anyone other than the intended recipient(s) is not intended to waive any confidentiality or privilege. If you have received this transmission in error, please alert the sender by reply e-mail and then delete this message and any attachments. Thank you.

"This message is for the designated recipient only and may contain privileged, proprietary, or otherwise private information. If you have received it in error, please notify the sender immediately and delete the original. Any other use of the email by you is prohibited."

"This message is for the designated recipient only and may contain privileged, proprietary, or otherwise private information. If you have received it in error, please notify the sender immediately and delete the original. Any other use of the email by you is prohibited."

DG150

GAS ENGINE TECHNICAL DATA

CATERPILLAR®

RATING NOTES LOAD 100% 75% 50% PACKAGE POWER (WITH FAN) (1)(2) ekW 150 113 75 PACKAGE POWER (WITH FAN) (1)(2) ekW 150 113 75 PACKAGE POWER (WITHOUT FAN) (2) bhp 253 190 127 GENERATOR EFFICIENCY (I) % 83.8 85.4 88.8 PACKAGE EFICIENCY (@ 1.0 Power Factor) (ISO 3046/1) (3) % 29.6 27.8 28.3 THERMAL EFFICIENCY (G) 0.9 74.5 76.2 76.9 ENGINE DATA (ISO 3046/1) (6) Btu/ekW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (INOMINAL) (6) Btu/ekW-hr 11512 12253 12046 ENGINE CALC CONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046 ENGINE CONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046	ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: INLET MANIFOLD AIR TEMP (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: FAN POWER (bhp):	1800RATING10.5PACKACATAACRATING131FUEL:176FUEL SYTAFUEL PFEISFUEL MIDRYFUEL LHINTEGRATED CATALYSTALTITUE13POWERVOLTAG	STRATEGY: SE TYPE: LEVEL: 'STEM: RESSURE RANGI THANE NUMBE IV (Btu/scf): DE CAPABILITY A FACTOR: IE(V):	E(psig): R: T 79°F INLET AIF	N R TEMP. (ft):	V WITH AIR FUEL R	EMERGENCY VITH RADIATOR STANDBY NAT GAS LPG IMPCO ATIO CONTROL 0.3-0.4 85 905 2152 0.8 208-600
PACKAGE POWER (WITH FAN) (1)(2) ekW 150 113 75 PACKAGE POWER (WITH FAN) (1)(2) kVA 188 140 94 ENGINE POWER (WITH FAN) (1)(2) kVA 188 140 94 ENGINE POWER (WITH OUT FAN) (2) bhp 253 190 127 GENERATOR EFFICIENCY (1) % 83.8 85.4 88.8 PACKAGE EFICIENCY 10 % 43.9 48.4 48.6 TOTAL EFFICIENCY (8) 0.9 ower Factor) (ISO 3046/1) (6) Btu/ekW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (ISO 3046/1) (6) Btu/ekW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (ISO 3046/1) (6) Btu/ekW-hr 11512 12253 12046 ENGINE PLEU CONSUMPTION (INOMINAL) (6) Btu/ekW-hr 11512 12253 12046 ENGINE PLOX (60°F, 14.7 psia) (WET) (7/8) Btu/hr<	RATING		NOTES	LOAD	100%	75%	50%
PACKAGE POWER (WITH FAN) (1)(2) kVA 188 140 94 ENGINE POWER (WITH FAN) (1)(2) bbp 253 190 127 GENERATOR EFFICIENCY (1) % 33.8 85.4 88.8 PACKAGE EFFICIENCY (1) % 33.8 85.4 88.8 THERMAL EFFICIENCY (1) % 28.6 27.8 28.3 THERMAL EFFICIENCY (1) % 48.4 48.6 48.6 TOTAL EFFICIENCY (@ 1.0 Power Factor) (ISO 3046/1) (6) Btu/kW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (ISO 3046/1) (6) Btu/kW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (INOMINAL) (6) Btu/kW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (INOMINAL) (6) Btu/kW-hr 1631 7252 7132 AIR FLOW (77; F1.47, psia) (WET) (7/8) Ib/hr 1417 1049 754	PACKAGE POWER	(WITH FAN)	(1)(2)	ekW	150	113	75
ENGINE POWER (WITHOUT FAM) (2) bhp 253 190 127 GENERATOR EFFICIENCY (1) % 83.8 85.4 88.8 PACKAGE EFFICIENCY (@ 1.0 Power Factor) (ISO 3046/1) (3) % 29.6 27.8 28.3 THERMAL EFFICIENCY (@ 1.0 Power Factor) (ISO 3046/1) (4) % 44.4.9 48.4 48.6 TOTAL EFFICIENCY (@ 1.0 Power Factor) (ISO 3046/1) (6) Btu/eKW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (INOMINAL) (6) Btu/eKW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/eKW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/eKW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/eKW-hr 11512 12253 12046 AR FLOW (77", f14,7 psia) (WET) (7/8) Btu/bh/min 320 237 170 FUE	PACKAGE POWER	(WITH FAN)	(1)(2)	k\/A	188	140	94
Enconne Function Construction (init inconin range) (i) (i) <td></td> <td></td> <td>(1)(2)</td> <td>bbp</td> <td>253</td> <td>190</td> <td>127</td>			(1)(2)	bbp	253	190	127
Delterion of the instance (i) 7 9 0.0.3 0.0.3 PACKAGE EFFICIENCY(@ 1.0 Power Factor) (i) (i) % 29.6 27.8 28.3 THERMAL EFFICIENCY(@ 1.0 Power Factor) (i) (i) % 29.6 27.8 28.3 TOTAL EFFICIENCY(@ 1.0 Power Factor) (i) (i) % 29.6 27.8 28.3 ENCINE DATA (i) (i) (i) % 74.5 76.2 76.9 PACKAGE FUEL CONSUMPTION (I) (i) (ii) Btu/ekW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046 AIR FLOW (77°F, 14.7 psia) (WET) (7)(8) Btu/ekW-hr 1417 1049 754 COMPRESSOR OUT TEMPERATURE (WET) (7)(8) soffm 32 25 17 COMPRESSOR OUT TEMPERATURE		(11110011744)	(2)	%	83.8	85.4	88.8
THERMAL EFFICIENCY (100 00011) (100 000110) (100 000110) (100 000	PACKAGE EFFICIENCY (@ 1.0 Power Eactor)	(ISO 3046/1)	(1)	70 9/	29.6	27.8	28.3
INTERNAL ET RUCH (@ 1.0 Power Factor) (4) 36 40.3 40.0 TOTAL EFFICIENCY (@ 1.0 Power Factor) (5) % 74.5 76.2 76.3 PACKAGE FUEL CONSUMPTION (ISO 3046/1) (6) Btu/ekW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046 ENGINE ELCONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046 INLET MAN. PLOW (77'F, 14.7 psia) (WET) (7)(8) ft3/min 320 237 170 AIR FLOW (60'F, 14.7 psia) (WET) (7)(8) Ib/hr 14117 1049 754 COMPRESSOR OUT TREPERATURE (WET) (7)(8) Ib/hr 1417 1049 754 COMPRESSOR OUT TEMPERATURE (F 303 22 17 17 130 86 82 1151 INLET MAN. PRESSURE (MEASURED IN PLENUM) (10) °F 130 86 82 11110 EXHAUST GAS FLOW (@engine outlet emp. 14.5 psia) (WET) (8)(13) 1b/hr 150		(180 3040/1)	(3)	70 9/	23.0	19.1	20.5 48.6
Indicate Line Line (1) (b) (c)	TOTAL EFFICIENCY (@ 1.0 Power Easter)		(4)	70 9/	74.5	40.4	76.0
ENGINE DATA PACKAGE FUEL CONSUMPTION (ISO 3046/1) (6) Btu/ekW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046 ENGINE FUEL CONSUMPTION (NOMINAL) (6) Btu/bhp-hr 6813 7252 7132 AR FLOW (77*F, 14.7 psia) (WET) (7)(8) fb/hr 1417 1049 754 AR FLOW (60°F, 14.7 psia) (WET) (7)(8) b/hr 1417 1049 754 COMPRESSOR OUT PRESSURE (WET) (7)(8) b/hr 1417 1049 754 COMPRESSOR OUT TEMPERATURE °F 303 228 163 AFTERCOOLER AIR OUT TEMPERATURE °F 130 86 82 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 TIMING (EXHAUST TEMPERATURE - ENGINE OUTLET (11) °B T1304 86 556 EXHAUST GAS FLOW (WET) (8)(13)	TOTAL ETTICIENCE (@ 1.0 FOWERT actor)		(3)	/0	74.5	70.2	70.9
PACKAGE FUEL CONSUMPTION (ISO 346/1) (6) Btu/kW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/kW-hr 11512 12253 12046 PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/kW-hr 11512 12253 12046 ENGINE FUEL CONSUMPTION (NOMINAL) (6) Btu/kW-hr 11512 12253 12046 AIR FLOW (77°F, 14.7 psia) (WET) (7)(8) ft3/min 320 237 170 AIR FLOW (60°F, 14.7 psia) (WET) (7)(8) bJ/hr 14117 1049 754 COMPRESSOR OUT PRESSURE (WET) (7)(8) bJ/hr 14117 1049 754 COMPRESSOR OUT TEMPERATURE (WET) (7)(8) mHg(abs) 88.2 73.6 62.5 COMPRESSOR OUT TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 INLET MAN. TEMPERATURE - ENGINE OUTLET (MEASURED IN PLENUM) (10) °F 1304 1221 1110	ENGINE DATA						
PACKAGE FUEL CONSUMPTION (NOMINAL) (6) Btu/ekW-hr 11512 12253 12046 ENGINE FUEL CONSUMPTION (NOMINAL) (6) Btu/bhp-hr 6813 7252 7132 AIR FLOW (WET) (7)(8) ft3/min 320 237 170 AIR FLOW (WET) (7)(8) ft3/min 322 25 17 COMPRESSOR OUT PRESSURE (WET) (7)(8) bb/hr 1417 1049 754 COMPRESSOR OUT TEMPERSURE "F" 130 86 82 73.6 62.5 COMPRESSOR OUT TEMPERATURE "F" 130 86 82 1143 INLET MAN. PRESSURE (9) in Hg(abs) 76.3 62.0 51.4 INLET MAN. TEMPERATURE (11) "BTDC 16 20 26 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) 115/nt 1170 836 556 EXHAUST GAS MASS FLOW WETD (8)(13) 1b/hr 1504 1119 <	PACKAGE FUEL CONSUMPTION	(ISO 3046/1	(6)	Btu/ekW-hr	11512	12253	12046
ENGINE FUEL CONSUMPTION (NOMINAL) (6) Btu/bhp-hr 6813 7252 7132 AIR FLOW (77°F, 14.7 psia) (WET) (7)(8) ft3/min 320 237 170 AIR FLOW (7)(8) ft3/min 320 237 170 FUEL FLOW (60°F, 14.7 psia) (WET) (7)(8) ft3/min 320 237 170 COMPRESSOR OUT PRESSURE (WET) (7)(8) ft3/min 322 25 17 COMPRESSOR OUT TEMPERATURE scfm 32 228 163 AFTERCOOLER AIR OUT TEMPERATURE °F 130 86 82 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 ITMING (AS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1117 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) ft3/min 1117 836 556 EXHAUST GAS MASS FLOW LOCALITY MAX LIMITS YEAR IN YEAR OUT	PACKAGE FUEL CONSUMPTION	(NOMINAL	(6)	Btu/ekW-hr	11512	12253	12046
AIR FLOW (77°F, 14.7 psia) (WET) (77(8) ft3/min 320 237 170 AIR FLOW (WVT) (77(8) ft3/min 320 237 170 AIR FLOW (60°F, 14.7 psia) (WET) (77(8) ft3/min 320 237 170 FUEL FLOW (60°F, 14.7 psia) (WET) (77(8) ft3/min 1417 1049 754 COMPRESSOR OUT PRESSURE in Hg(abs) scfm 32 25 17 COMPRESSOR OUT TEMPERATURE in Hg(abs) 62.0 62.5 62.5 COMPRESSURE (9) in Hg(abs) 76.3 62.0 51.4 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 TIMING (11) °BTDC 16 20 26 26 27 110 EXHAUST TEMPERATURE - ENGINE OUTLET (12) °F 1304 1221 1110 EXHAUST GAS FLOW (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW LOCALITY MAX LIMITS YEAR IN	ENGINE FUEL CONSUMPTION	(NOMINAL	(6)	Btu/bhp-hr	6813	7252	7132
AIR FLOW (WET) (7)(8) Ib/hr 1417 1049 754 FUEL FLOW (60°F, 14.7 psia) COMPRESSOR OUT PRESSURE in Hg(abs) 88.2 73.6 62.5 COMPRESSOR OUT TEMPERATURE in Hg(abs) 88.2 73.6 62.5 AFTERCOOLER AIR OUT TEMPERATURE °F 130 86 82 INLET MAN. PRESSURE (9) in Hg(abs) 76.3 62.0 51.4 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 1300 86 82 INLET MAN. TEMPERATURE - ENGINE OUTLET (11) °BTDC 16 20 26 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) fl3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION AGENCY TIER/STAGE REGULATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bp-hr - NOX: 2.0 CO: 4.0 2011 <t< td=""><td>AIR FLOW (77°F, 14.7 psia)</td><td>(WET</td><td>(7)(8)</td><td>ft3/min</td><td>320</td><td>237</td><td>170</td></t<>	AIR FLOW (77°F, 14.7 psia)	(WET	(7)(8)	ft3/min	320	237	170
FUEL FLOW (60°F, 14.7 psia) scfm 32 25 17 COMPRESSOR OUT PRESSURE in Hg(abs) 88.2 73.6 62.5 COMPRESSOR OUT TEMPERATURE °F 303 228 163 AFTERCOLER AIR OUT TEMPERATURE °F 130 86 82 INLET MAN. PRESSURE (MEASURED IN PLENUM) (10) °F 130 86 82 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 INLET MAN. TEMPERATURE - ENGINE OUTLET (12) °F 1304 1221 1110 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION AGENCY TIER/STAGE REGULATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bp-hr -	AIR FLOW	WET	(7)(8)	lb/hr	1417	1049	754
COMPRESSOR OUT PRESSURE in Hg(abs) 88.2 73.6 62.5 COMPRESSOR OUT TEMPERATURE °F 303 228 163 AFTERCOOLER AIR OUT TEMPERATURE °F 130 86 82 INLET MAN. PRESSURE (9) in Hg(abs) 76.3 62.0 51.4 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 TIMING (11) °BTDC 16 20 26 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW US. (EXCL CALIF) (14) g/bp-hr - NOX: 2.0 CO: 4.0 2011 FPA S.1. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bp-hr - NOX: 2.0 CO: 4.0 2011 LHV INPUT <td< td=""><td>FUEL FLOW (60°F, 14.7 psia)</td><td>· · · ·</td><td></td><td>scfm</td><td>32</td><td>25</td><td>17</td></td<>	FUEL FLOW (60°F, 14.7 psia)	· · · ·		scfm	32	25	17
COMPRESSOR OUT TEMPERATURE "F 303 228 163 AFTERCOOLER AIR OUT TEMPERATURE "F 130 86 82 INLET MAN. PRESSURE (9) in Hg(abs) 76.3 62.0 51.4 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) "F 130 86 82 INLET MAN. TEMPERATURE - ENGINE OUTLET (MEASURED IN PLENUM) (10) "F 1304 1221 1110 EXHAUST TEMPERATURE - ENGINE OUTLET (12) "F 1304 1221 1110 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION AGENCY TIER/STAGE REGULATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.1. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bp-hr - NOX: 2.0 CO: 4.0 2011 LIV INPUT (16)(22) Btu/min 4896 <td< td=""><td>COMPRESSOR OUT PRESSURE</td><td></td><td></td><td>in Hg(abs)</td><td>88.2</td><td>73.6</td><td>62.5</td></td<>	COMPRESSOR OUT PRESSURE			in Hg(abs)	88.2	73.6	62.5
AFTERCOOLER AIR OUT TEMPERATURE °F 130 86 82 INLET MAN. PRESSURE (9) in Hg(abs) 76.3 62.0 51.4 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 TIMING °F 130 86 82 11.4 11.1 °F 130 86 82 TIMING °F 130 86 82 11.4 11.1 °F 130 86 82 TIMING °F 130 86 82 26 26 26 EXHAUST TEMPERATURE - ENGINE OUTLET (12) °F 1304 122.1 1110 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bp-hr - NOX: 2.0 CO: 4.0 2011	COMPRESSOR OUT TEMPERATURE			°F	303	228	163
INLET MAN. PRESSURE (9) in Hg(abs) 76.3 62.0 51.4 INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 IMLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) °F 130 86 82 IMING (11) °BTDC 16 20 26 EXHAUST TEMPERATURE - ENGINE OUTLET (12) °F 1304 1221 1110 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION AGENCY LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bp-hr - NOX: 2.0 CO: 4.0 2011 INATURAL GAS Intro S1.5 S1.5 S1.5 S1.5 S1.5 S1.5 EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bp-hr - NOX: 2.0 CO: 4.0 2011	AFTERCOOLER AIR OUT TEMPERATURE			°F	130	86	82
INLET MAN. TEMPERATURE (MEASURED IN PLENUM) (10) "F 130 36 82 TIMING "F 130 86 82 111 INILET MAN. TEMPERATURE - ENGINE OUTLET (11) "BTDC 16 20 26 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION AGENCY TIER/STAGE REGULATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bhp-hr - NOx: 2.0 CO: 4.0 2011 LHV INPUT (15) Btu/min 28781 22974 15064 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO LUBE OIL (OC) (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 <t< td=""><td>INI ET MAN PRESSURE</td><td></td><td>(9)</td><td>in Ho(abs)</td><td>76.3</td><td>62.0</td><td>51.4</td></t<>	INI ET MAN PRESSURE		(9)	in Ho(abs)	76.3	62.0	51.4
TIMING (III) (III) (III) *BTDC 16 20 26 EXHAUST TEMPERATURE - ENGINE OUTLET (I12) *F 1304 1221 1110 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION AGENCY IIIR/STAGE REGULATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bhp-hr - NOx: 2.0 CO: 4.0 2011 ENERGY BALANCE DATA IIIV INPUT (15) Btu/min 28781 22974 15064 LHV INPUT (15) Btu/min 4896 3639 2427 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO LUBE OIL (OC) (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 5132	INLET MAN TEMPERATURE	(MEASURED IN PLENUM	(10)	°F	130	86	82
Immo (11) Diso 100 120 110 EXHAUST TEMPERATURE - ENGINE OUTLET (12) °F 1304 1221 1110 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(13) ft3/min 1177 836 556 EXHAUST GAS MASS FLOW (WET) (8)(13) Ib/hr 1504 1119 799 REGULATORY INFORMATION AGENCY TIER/STAGE REGULATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bhp-hr - NOX: 2.0 CO: 4.0 2011 LHV INPUT (15) Btu/min 28781 22974 15064 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357 HEAT REJECTION TO LUBE OIL (OC) (18)(20) Btu/min 470 518 351 </td <td>TIMING</td> <td></td> <td>(10)</td> <td>°BTDC</td> <td>16</td> <td>20</td> <td>26</td>	TIMING		(10)	°BTDC	16	20	26
Image: Construction control of the control of the time, table of	EXHAUST TEMPERATURE - ENGINE OUTLE	т	(17)	0150 °F	1304	1221	1110
EXHAUST GAS MASS FLOW Count (Sungine outer temp, FHS pold) (WET) (U(LT)	EXHAUST GAS FLOW (@engine outlet temp.	14.5 psia) (WET	(8)(13)	ft3/min	1177	836	556
REGULATORY INFORMATION AGENCY TIER/STAGE REGULATION LOCALITY MAX LIMITS YEAR IN YEAR OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bhp-hr - NOX: 2.0 CO: 4.0 2011 ENERGY BALANCE DATA Itel (15) Btu/min 28781 22974 15064 Itel (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357	EXHAUST GAS MASS FLOW	(WET	(8)(13)	lb/hr	1504	1119	799
REGULATORY INFORMATIONAGENCY TIER/STAGE REGULATION LOCALITYMAX LIMITSYEAR INYEAR OUTEPAS.I. STATIONARY EMERGENCY -U.S. (EXCL CALIF)(14)g/bhp-hr - NOX: 2.0 CO: 4.0 VOC: 12011ENERGY BALANCE DATALHV INPUT(15)Btu/min287812297415064HEAT REJECTION TO JACKET WATER (JW)(16)(22)Btu/min489636392427HEAT REJECTION TO ATMOSPHERE(INCLUDES GENERATOR)(17)Btu/min452733912045HEAT REJECTION TO LUBE OIL (OC)(18)(23)Btu/min470518357HEAT REJECTION TO		(*****	(0)(10)	10/11	1001	1110	100
AGENCY TIER/STAGE REGULATIONAGENCY TIER/STAGEREGULATIONLOCALITYMAX LIMITSYEAR INYEAR OUTEPAS.I. STATIONARY EMERGENCY -U.S. (EXCL CALIF)(14)g/bhp-hr - NOX: 2.0 CO: 4.0 VOC: 12011ENERGY BALANCE DATALHV INPUT(15)Btu/min287812297415064HEAT REJECTION TO JACKET WATER (JW)(16)(22)Btu/min489636392427HEAT REJECTION TO ATMOSPHERE(INCLUDES GENERATOR)(17)Btu/min452733912045HEAT REJECTION TO LUBE OIL (OC)(18)(23)Btu/min470513357HEAT REJECTION TO ATMOSPHERE(19)(20)Btu/min8561777455123	DECUL ATORY INFORMATION						
ENERGY BALANCE DATA LEGOLATION LOCALITY IMAX LIMITS TEAK IN TEAK OUT EPA S.I. STATIONARY EMERGENCY - U.S. (EXCL CALIF) (14) g/bhp-hr - NOX: 2.0 CO: 4.0 2011 ENERGY BALANCE DATA ILVINITS 110000 VOC: 1 2011 ENERGY BALANCE DATA (15) Btu/min 28781 22974 15064 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357 HEAT REJECTION TO ATMOSPHERE (19)(20) Btu/min 470 513 357				MAX			
ENERGY BALANCE DATA (14) (14) (14) (14) 2011 2011 2011 ENERGY BALANCE DATA Image: Construction of the state o			(14)			2011	
ENERGY BALANCE DATA LHV INPUT (15) Btu/min 28781 22974 15064 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357 HEAT REJECTION TO EXHAUST (LHV TO Z72E) (19)(20) Btu/min 2774 5123	NATURAL GAS	S CLARENCE CALLER CALLER	(14)	g/bhp-m - NC	DC: 1	2011	
ENERGY DALANCE DATA LHV INPUT (15) Btu/min 28781 22974 15064 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357 HEAT REJECTION TO ADALST (LHU TO Z7°E) (19)(20) Btu/min 2774 5123				•			
HEAT REJECTION TO JACKET WATER (JW) (15) But/min 26781 22974 15064 HEAT REJECTION TO JACKET WATER (JW) (16)(22) Btu/min 4896 3639 2427 HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357 HEAT REJECTION TO EXHAUST (LHU TO 77°E) (19)(20) Btu/min 2651 7774 5122			(15)	Btu/min	29791	22074	15064
HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (10)(22) But/min 4890 3039 2427 HEAT REJECTION TO ATMOSPHERE (INCLUDES GENERATOR) (17) Btu/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357 HEAT REJECTION TO EXHAUST (LHUTO 77°E) (19)(20) Btu/min 8561 7774 5122			(10)	Btu/min	4906	22314	2427
HEAT REJECTION TO AUMOST HERE (INCLUDES GENERATOR) (17) But/min 4527 3391 2045 HEAT REJECTION TO LUBE OIL (OC) (18)(23) Btu/min 470 518 357 HEAT REJECTION TO AUMOST REVE (19)(20) Btu/min 9561 7774 5122			(10)(22)	Btu/min	4090	3039	2421 2045
Intext rejection to Lobe OIL (OC) (18)(23) Btu/min 4/0 518 357 HEAT RE JECTION TO EXHAUST (LHV/TO 77°E) (10)(20) Btu/min 9661 7774 5192		(INCLUDES GENERATOR			4027	5391	2040
	HEAT REJECTION TO EUDE OIL (OC)	°F)	(10)(23)	Btu/min	8661	777/	5123

HEAT REJECTION TO EXHAUST (LHV TO 248°F)

HEAT REJECTION TO AFTERCOOLER (AC)

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

(19)

(21)(23)

Btu/min

Btu/min

7528

1126

6938

685

4525

277

Emission levels are at the Caterpillar provided catalyst outlet. Values are based on engine operation at steady state conditions. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

CATERPILLAR®

FUEL USAGE GUIDE

CAT METHANE NUMBER	84	100
SET POINT TIMING	16	16
DERATION FACTOR	1	1

ALTITUDE DERATION FACTORS AT RATED SPEED

ALTITUDE (FEET ABOVE SEA LEVEL)														
	-	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
	50	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
	60	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
°F	70	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
TEMP	80	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
AIR	90	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
INLET	100	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
	110	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
	120	1	1	1	0.98	0.96	0.93	0.91	0.89	0.87	0.84	0.82	0.80	0.77
	130	1	1	0.99	0.97	0.95	0.93	0.90	0.88	0.86	0.83	0.81	0.79	0.77

AFTERCOOLER HEAT REJECTION FACTORS (ACHRF)

ALTITUDE (FEET ABOVE SEA LEVEL)														
	_	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
	50	1	1	1	1	1	1	1	1	1	1	1	1	1
-	60	1	1	1	1	1	1	1	1	1	1	1	1	1
°F	70	1	1	1	1	1	1	1	1	1	1	1	1	1
TEMP	80	1	1	1.02	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
AIR	90	1	1.05	1.10	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
INLET	100	1.09	1.14	1.19	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
	110	1.17	1.22	1.27	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28
	120	1.25	1.31	1.36	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
	130	1.34	1.39	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45

FUEL USAGE GUIDE:

This table shows the derate factor and full load set point timing required for a given fuel. Note that deration and set point timing adjustment may be required as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Cateroillar methane number calculation

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for your site. The derate factors shown assume a specific air-to-core temperature rise and zero additional air flow restriction on the standard packaged radiator. Refer to TMI Systems Data for fan air flow and air-to-core temperature rise values. Increased fan airflow restriction or a different air-to-core rise value requires a Special Rating Request to determine actual engine power at your site. Additional rating may be available with a larger, custom radiator.

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/ Temperature deration factors and RPC(reference the Caterpillar Methane Program) establish air system limitations. RPC comes into play when the Altitude/Temperature deration is less than 1.0 (100%). Under this condition, add the two factors together. When the site conditions do not require an Altitude/Temperature derate (factor is 1.0), it is assumed the turbocharger has sufficient capability to overcome the low fuel relative power, and RPC is ignored. To determine the actual power available, take the lowest rating between 1) and 2). 1) Fuel Usage Guide Deration

2) 1 - ((1 - Altitude / Temperature Deration) +(1 - RPC))

AFTERCOOLER HEAT REJECTION FACTORS(ACHRF):

To maintain a constant air inlet manifold temperature, as the inlet air temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor (ACHRF) to adjust for inlet air temp and altitude conditions. See note (22) for application of this factor in calculating the heat exchanger sizing criteria. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail.

NOTES:

1. Generator efficiencies, power factor, and voltage are based on standard generator. [Package Power (ekW) is calculated as: (Engine Power (bkW) - Fan Power (bkW)) x Generator Efficiency], [Package Power (kVA) is calculated as: (Engine Power (bkW) - Fan Power (bkW)) x Generator Efficiency / Power Factor]

Rating is with one engine driven jacket water pump. Tolerance is (+)3, (-)0% of full load.
 Package Efficiency published in accordance with ISO 3046/1, based on a 1.0 power factor.

4. Thermal Efficiency is calculated based on energy recovery from the jacket water, lube oil, and exhaust to 248°F with engine operation at ISO 3046/1 Package Efficiency, and assumes unburned fuel is converted in an oxidation catalyst.

5. Total efficiency is calculated as: Package Efficiency + Thermal Efficiency. Tolerance is ±10% of full load data.

6. ISO 3046/1 Package fuel consumption tolerance is (+)5, (-)0% at the specified power factor. Nominal package and engine fuel consumption tolerance is ± 5.0% of full load data at the specified power factor.

7. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

8. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

9. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

10. Inlet manifold temperature is a set point value.

11. Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.

12. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

13. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.

14. Gaseous emissions data measurements are consistent with those described in EPA 40 CFR PART 60 SUBPART JJJJ and ISO 8178 for measuring VOC, CO, and NOx. Gaseous emissions values are weighted cycle averages and are in compliance with the stationary regulations.

15. LHV rate tolerance is ± 5.0%.

16. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data.

17. Heat rejection to atmosphere based on treated water. Tolerance is ± 50% of full load data.

18. Lube oil heat rate based on treated water. Tolerance is ± 20% of full load data.

19. Exhaust heat rate based on treated water. Tolerance is ± 10% of full load data.

20. Heat rejection to exhaust (LHV to 77°F) value shown includes unburned fuel and is not intended to be used for sizing or recovery calculations.

21. Heat rejection to aftercooler tolerance is ±5% of full load data.

22. Total Jacket Water Circuit heat rejection is calculated as: JW x 1.1. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied

tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

23. Total Lube Oil Cooler Circuit heat rejection is calculated as: OC x 1.2. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

24. Total Aftercooler Circuit heat rejection is calculated as: AC x ACHRF x 1.05. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

ENCLOSURES

Image shown may not reflect actual configuration.

FEATURES

Robust/Highly Corrosion Resistant Construction

- Factory installed on skid base
- Caterpillar white/yellow paint
- Environmentally friendly, polyester powder baked paint
- 18 gauge Steel, 12 gauge 5052 grade Aluminum
- Zinc plated fasteners
- Stainless steel hinges
- Internally mounted exhaust silencing system
- Designed and tested to comply with UL 2200 Listed generator set package
- Comply with ASCE /SEI 7 for Wind Loads up to 100 (Steel) and 150 mph (Aluminum)
- Optional seismic certification offered
- Compression door latches providing solid door seal with door stopper

Excellent Access

- Large cable entry area for installation ease
- Accommodates side mounted single or multiple breakers
- Single door on left & rear side of the package
- Dual doors on right hand side
- Doors vertically hinged allow 180° opening rotation
- Doors capable of lift off at 90° opening rotation
- For non-routine service access are removable panels
- Standard Lube oil drain valve, coolant drain/valve piped to the exterior of the skid base
- Radiator fill cover

Sound Attenuated and Weather Protective Enclosures

DG100 - DG200 (100 - 200 ekW Gas)

Security and Safety

- Lockable (keyed or padlock) doors which give full access to control panel and breaker
- Cooling fan and battery charging alternator fully guarded
- Oil fill and battery can only be reached via lockable access
- Optional externally mounted emergency stop button
- · Designed for spreader bar lifting to ensure safety
- Stub-up area is rodent proof

Options

- Skid base compatible
- DC lighting package (Optional)

Weights & Dimensions

A. Package Weights and Dimensions

Enclosure Type	Genset	Length "L"		Width "W"		Height "H"		Package Weight	
	Model	mm	in	mm	in	mm	in	kg	lb
	DG100	2442	96	1297	51	1449	57	1364	3007
	DG125	2442	96	1297	51	1449	57	1464	3226
Open Set on Skid Base (Wide)	DG150	2892	114	1396	55	1734	68	1657	3653
	DG175	2985	117.5	1600	63	1789	71	1780	3924
	DG200	2985	117.5	1600	63	1789	71	1780	3924
	DG100	3100	122	1230	48	1606	63	1700	3748
Sound Attenuated Level-2 Enclosure	DG125	3100	122	1230	48	1606	63	1800	3968
on Skid Base (Steel)	DG150	3348	132	1445	57	1875	74	2051	4522
	DG175	3624	143	1626	64	1987	78	2302	5075
	DG200	3624	143	1626	64	1987	78	2302	5075
	DG100	3100	122	1230	48	1606	63	1764	3889
Sound Attenuated Level-3 Enclosure	DG125	3100	122	1230	48	1606	63	1864	4109
on Skid Base (Steel)*	DG150	3348	132	1445	57	1875	74	2085	4597
	DG175*	3624	143	1626	64	1987	78	-	-
	DG200*	3624	143	1626	64	1987	78	-	_
	DG100	3100	122	1230	48	1606	63	1579	3481
Sound Attenuated Level-2 Enclosure	DG125	3100	122	1230	48	1606	63	1679	3701
on Skid Base (Aluminum)	DG150	3348	132	1445	57	1875	74	1906	4202
	DG175	3624	143	1626	64	1987	78	2145	4729
	DG200	3624	143	1626	64	1987	78	2145	4729
	DG100	3100	122	1230	48	1606	63	1654	3646
Sound Attenuated Level-3 Enclosure	DG125	3100	122	1230	48	1606	63	1754	3866
on Skid Base (Aluminum)*	DG150	3348	132	1445	57	1875	74	1938	4273
	DG175*	3624	143	1626	64	1987	78	-	-
	DG200*	3624	143	1626	64	1987	78	-	-
	DG100	2442	96	1297	51	1449	57	1564	3448
Maathar Protoctive Enclosure	DG125	2442	96	1297	51	1449	57	1664	3668
on Skid Base (Steel)	DG150	2892	114	1445	57	1875	74	1919	4231
	DG175	3624	143	1626	64	2027	80	2072	4568
	DG200	3624	143	1626	64	2027	80	2072	4568
	DG100	3100	122	1230	48	1606	63	1710	3769
Sound Attenuated Level-2 Cold Weather	DG125	3100	122	1230	48	1606	63	1810	3990
Enclosure on Skid Base (Steel)*	DG150	3348	132	1445	57	1875	74	2057	4535
	DG175	3624	143	1626	64	1987	78	2332	5141
	DG200	3624	143	1626	64	1987	78	2332	5141
	DG100	3100	122	1230	48	1606	63	1772	3906
Sound Attenuated Level 2 Cold Moathor	DG125	3100	122	1230	48	1606	63	1872	4127
Enclosure on Skid Base (Steel)	DG150	3349	132	1446	57	1876	74	2091	4610
	DG175*	3624	143	1626	64	1987	78	-	-
	DG200*	3624	143	1626	64	1987	78	-	-

*Preliminary Data – Subject to change without notice. Weights include Genset, Enclosure (where applicable)

B. Component Weights to Calculate Package Weights

Standby Ratings/ Genset Models	andby Ratings/ Genset Models Wide Skid Base		Sound Attenuated Enclosure (L2) (Steel)		Sound Attenuated Enclosure (L2) (Aluminum)		Weather Protective Enclosure		SA Cold Weather Enclosure (L2)	
ekW	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb
100 (DG100)	143	315	336 / 400	741 / 881	215 / 290	474 / 639	200	450	346 / 408	763 / 900
125 (DG125)	143	315	336 / 400	741 / 881	215 / 290	474 / 639	200	450	346 / 408	763 / 900
150 (DG150)*	255	515	394 / 428	869 / 944	249 / 281	549 / 620	262	578	400 / 434	882 / 957
175 (DG175)*	273	602	522 / -	1150 / -	365 / -	804 /	292	643	470 /	1036 /
200 (DG200)*	273	602	522 /	1150 / -	365 / -	804 / -	292	643	470 /	1036 /

*Preliminary Data - Subject to change without notice.

C. Enclosure Sound Pressure Levels (SPL) for Sound Attenuated Steel and Aluminum Enclosures

Standby Ratings/ Genset Models	SPL at 7m (23 ft) at 100% load (L2)
ekW	dBA
100 (DG100)	75
125 (DG125)	75
150 (DG150)	75
175 (DG175)	75
200 (DG200)	75

Standby Ratings / Genset Models ekW	SPL at 7m (23 ft) at 100% load (L3) dBA
100 (DG100)	70
125 (DG125)	70
150 (DG150)	70
175 (DG175)	70
200 (DG200)	70

©2023 Caterpillar All rights reserved. Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, LET'S DO THE WORK, their respective logos, "Caterpillar Corporate Yellow", the "Power Edge" and Cat "Modern Hex" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

www.cat.com/electricpower

APPENDIX C – CONSTRUCTION HRA MODELING RESULTS

Model Cancer Risk Chronic Risk

Maximum Cancer Risk by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Bowerman RNG Facility - Construction - Elevated Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Resider	oosed Individual nt (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Pollutant CAS Pollutant	receptor #	71	receptor #	2515	receptor #	2565		
	ronatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		433,984.28	3,731,366.25	431,460.77	3,730,680.05	433,119.45	3,731,289.08	
		1-Year Cancer	Contribution (%)	1-Year Cancer	Contribution (%)	1-Year Cancer	Contribution (%)	
		Risk	Contribution (%)	Risk	Contribution (%)	Risk	Contribution (%)	
-	ALL	1.64E-05	100%	6.88E-06	100%	2.19E-07	100.00%	
9901	DPM	1.64E-05	100.00%	6.88E-06	100.00%	2.19E-07	100.00%	

Cancer Risk by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor Bowerman RNG Facility - Construction - Elevated Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Sources Source Description	Source Description	receptor #	71	receptor # 2515		receptor #	2565	
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m) UTM Northing (m)		UTM Easting (m)	UTM Northing (m)	
		433,984.28	3,731,366.25	431,460.77	3,730,680.05	433,119.45	3,731,289.08	
		1-Year Cancer	Contribution (%)	1-Year Cancer	Contribution (%)	1-Year Cancer	Contribution (%)	
		Risk	contribution (76)	Risk	contribution (76)	Risk		
ALL		1.64E-05	100%	6.88E-06	100%	2.19E-07	100%	
PIPELINE	Pipeline Construction	1.45E-05	88.08%	6.80E-06	98.76%	1.90E-07	86.66%	
RNG_FAC	Renewable Natural Gas Facility Construction	1.96E-06	11.92%	8.50E-08	1.24%	2.92E-08	13.34%	

Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Bowerman RNG Facility - Construction - Elevated Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Pollutant CAS Pollutant	Pollutant	receptor #	71	receptor #	2515	receptor #	2565	
	Tonutant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		433,984.28	3,731,366.25	431,460.77	3,730,680.05	433,119.45	3,731,289.08	
		Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	
		Index	Contribution (%)	Index	Contribution (%)	Index		
_	ALL	1.85E-02	100.00%	7.74E-03	100.00%	3.02E-03	100.00%	
9901	DPM	1.85E-02	100.00%	7.74E-03	100.00%	3.02E-03	100.00%	

2 of 2

Chronic Hazard Index by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor Bowerman RNG Facility - Construction - Elevated Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
		receptor #	71	receptor #	2515	receptor #	2565	
Sources	Source Description	UTM Easting (m) UTM Northing (m)		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		433,984.28 3,731,366.25		431,460.77	3,730,680.05	433,119.45	3,731,289.08	
		Chronic Hazard	Contribution (0()	Chronic Hazard	Contribution (0/)	Chronic Hazard	Contribution (%)	
		Index	Contribution (%)	Index	Contribution (%)	Index		
ALL		1.85E-02	100%	7.74E-03	100%	3.02E-03	100%	
PIPELINE	Pipeline Construction	1.63E-02	88.08%	7.64E-03	98.76%	2.62E-03	86.66%	
RNG_FAC	Renewable Natural Gas Facility Construction	2.20E-03	11.92%	9.56E-05	1.24%	4.03E-04	13.34%	

Maximum Cancer Risk by Pollutant at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Construction - Flat Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Pollutant CAS Pollutant	receptor #	71	receptor #	2515	receptor #	2565		
	i onutant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		433,984	3,731,366	431,461	3,730,680	433,119	3,731,289	
		1-Year Cancer	Contribution	1-Year Cancer	Contribution	1-Year Cancer	Contribution (%)	
		Risk	(%)	Risk	(%)	Risk	Contribution (%)	
-	ALL	1.69E-05	100%	7.03E-06	100%	2.59E-07	100%	
9901	DPM	1.69E-05	100.00%	7.03E-06	100.00%	2.59E-07	100.00%	

Cancer Risk by Source for All Pollutants Combined at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Construction - Flat Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Sources	Source Description	receptor #	71	receptor #	2515	receptor #	2565	
Jources		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		433,984	3,731,366	431,461	3,730,680	433,119	3,731,289	
		1-Year Cancer Risk	Contribution (%)	1-Year Cancer Risk	Contribution (%)	1-Year Cancer Risk	Contribution (%)	
ALL		1.69E-05	100%	7.03E-06	100%	2.59E-07	100%	
PIPELINE	Pipeline Construction	1.51E-05	89.21%	6.93E-06	98.63%	2.26E-07	87.30%	
RNG_FAC	Renewable Natural Gas Facility Construction	1.83E-06	10.79%	9.60E-08	1.37%	3.29E-08	12.70%	

Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Construction - Flat Terrain AERMOD Run

Pollutant CAS Pollutant		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
	Pollutant	receptor #	71	receptor # 2515		receptor #	2565	
	i onatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		433,984	3,731,366	431,461	3,730,680	433,119	3,731,289	
		Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	
		Index	Contribution (%)	Index	Contribution (%)	Index	Contribution (%)	
-	ALL	1.91E-02	100%	7.90E-03	100%	3.58E-03	100%	
9901	DPM	1.91E-02	100.00%	7.90E-03	100.00%	3.58E-03	100.00%	

	Chronic Hazard Index by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Construction - Flat Terrain AERMOD Run										
Sources		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Maximally Exposed Individual Worker (MEIW)					
		receptor #	71	receptor #	2515	receptor #	2565				
	Source Description	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)				
		433,984	3,731,366	431,461	3,730,680	433,119	3,731,289				
		Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)				
ALL		1.91E-02	100%	7.90E-03	100%	3.58E-03	100%				
PIPELINE	Pipeline Construction	1.70E-02	89.21%	7.79E-03	98.63%	3.13E-03	87.30%				
RNG_FAC	Renewable Natural Gas Facility Construction	2.06E-03	10.79%	1.08E-04	1.37%	4.55E-04	12.70%				

APPENDIX D – EMISSION CALCULATIONS FROM OPERATIONS

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D Operational Emissions - Thermal Oxidizer Unit

Table D.1 Data (Thermal Oxidizer)

Stream ID ¹	Stream Max Capacity ¹ (scfm)	Methane Content in Tail Gas Stream ¹ (Vol.%)	Stream Max Capacity ² (mmBtu/hr)	Stream HHV ³ (mmBtu/mmscf)	Hours per Day	Days per Year	Stream Consumption ⁴ (mmscf/hr)	Stream Max Consumption⁵ (mmscf/yr)
Plant Inlet	6,000					365	0.3600	3,153.60
Tail Gas Stream 1	2,315	4.36%	6.36	45.78	-24		0.1389	1,216.76
Tail Gas Stream 2	885	10.96%	6.11	115.08			0.0531	465.16
Supplemental Fuel	280		17.64				0.0168	147.17
	Normal Operations Tot	tal Heat Input (mmBtu/hr)	30.1					
Start-Up TG Stream 1	1,100	40.00%	27.7	420.00]		0.0660	0.00
Start-Up Suppl. Fuel	83		5.2				0.0050	0.00
					-			

Start-Up Total Heat Input (mmBtu/hr) 32.9

¹ Plant Inlet flowrate and Tail Gas Stream 1 and 2 flowrates and methane content from TOU and Flare Gases PFD in Appendix B. Supplemental Fuel flowrate from Perennial.

² Tail Gas Stream 1, Tail Gas Stream 2

Stream Max Capacity (mmBtu/hr) = Stream Max Capacity (scfm) x Methane Content in Tail Gas Stream (Vol.%) x 60 / 1,000,000 x NG HHV (mmBtu/mmscf)

NG HHV 1,050 mmBtu/mmscf

Supplemental Fuel

Stream Max Capacity (mmBtu/hr) = Stream Max Capacity (scfm) x 60 / 1,000,000 x NG HHV (mmBtu/mmscf)

³ Stream HHV (mmBtu/mmscf) = Stream Max Capacity (mmBtu/hr) / (Stream Max Capacity (scfm) x 60 / 1,000,000)

⁴ Stream Consumption (mmscf/h) = Stream Max Capacity (scfm) x 60 / 1,000,000

⁵ Stream Consumption (mmscf/yr) = Stream Max Capacity (mmscf/hr) x Hours per Day x Days per Year

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D Operational Emissions - Thermal Oxidizer Unit

Table D.2 Thermal Oxidizer Criteria Pollutant Emission Factors and Emissions

Criteria Pollutant	Plant inlet (ppmv)	Exhaust Content (ppmv @ 3% O2)	Emission Factor ⁶ (lb/mmscf)	Emission Factor ⁷ (lb/mmBtu)	Hourly Emissions ⁸ (lb/hr)	Daily Emissions ⁹ (lb/day)	Annual Emissions ¹⁰ (lb/yr)	Monthly Emissions ¹¹ (lb/mo)	30-Day Average Emissions ¹² (lb/30-day)
NOx ¹		29		0.035	1.0538	25.29	9,231.60	769.30	25.64
CO ²		106		0.080	2.4088	57.81	21,100.80	1,758.40	58.61
VOC ³				0.006	0.1807	4.34	1,582.56	131.88	4.40
SOx, Tail Gas ⁴	85		14.354		5.1673	124.01			
	60		10.132		3.6475	87.54	31,952.04	2,662.67	88.76
SOx, Supplemental Fuel ⁴			0.60		0.0101	0.24	88.30	7.36	0.25
PM10 ⁵			7.5	0.007	0.2151	5.16	1,884.00	157.00	5.23
2	NOx emission factor from The emission limit is pro [Exhaust Content (ppmv CO emission factor from The emission limit is pro [Exhaust Content (ppmv Proposed BACT/LAER for	n Rule 1147, Table 2, "Afted posed to be 0.035 lb NOx @ 3% O2)] equipment specification : posed to be 0.080 lb NOx @ 3% O2)] r VOC is the South Coast A	erburner, Degassing Unit, /MMBTU, as the BACT/LA sheet design criteria. Refe /MMBTU, as the BACT/LA \QMD BACT/LAER determ	Thermal Oxidizer, Catalyti ER limit for a RNG Process rrence is provided in Appe ER limit for a RNG Process ination for A/N 614468 [F	c Oxidizer or Vapor Incine sing Plant that burns low- endix B. sing Plant that burns low- lare I-6 AT OCWR, FRB (Fa	rator," is 0.024 lb/MMBTL BTU tail gases in addition BTU tail gases in addition scility ID 69646)].	J/hr when combusting on to the supplemental fuel to the supplemental fuel	ly natural gas as the supp of natural gas. of natural gas.	lemental fuel.

[Emission Factor (lb/mmBtu)]

⁴ Tail Gas

The South Coast AQMD BACT/LAER determination for A/N 614468 requires sulfur content no higher than: 85 ppmv, averaged daily; and 60 ppmv, averaged monthly.

These values are used for the Tail Gas emission calculations.

[Plant Inlet (ppmv)]

Supplemental Fuel South Coast AQMD Default

[lb/mmscf]

⁵ Proposed Emission Factor for PM10 is derived from the South Coast AQMD default emission factor for external combustion.

[Emission Factor (lb/mmBtu)]

⁶ SOx, Tail Gas

Emission Factor (lb/mmscf) = Plant Inlet (ppmv) x SOx MW (lb/lbmol) / Molar Volume (scf/lbmol)

 SOx MW
 64
 Ib/Ibmol

 Molar Volume
 379
 scf/Ibmol, @ 60 Deg F

⁷ NOx, CO

Emission Factor (lb/mmBtu) = Exhaust Content (ppmv @ 3% O2) x 20.9 / (20.9 - 3) x F-Factor (dscf/mmBtu) x MW / Molar Volume / 1,000,000

F-Factor	8,710	dscf/mmBtu
NOx MW	46	

CO MW 28

⁸ NOx, CO, VOC, PM10

Hourly Emissions (lb/hr) = Emission Factor (lb/mmBtu) x Total Heat Input (mmBtu/hr)

SOx, Tail Gas

Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Plant Inlet (mmscf/hr)

SOx, Supplemental Fuel

Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Supplemental Fuel (mmscf/hr)

⁹ Daily Emissions (lb/day) = Hourly Emissions (lb/hr) x Hours per Day

¹⁰ Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) x Hours per Day x Days per Year

¹¹ Monthly Emissions (lb/mo) = Annual Emissions (lb/yr) / 12

¹² 30-Day Average Emissions (lb/30-day) = Monthly Emissions (lb/mo) / 30

Bowerman Power LFG, LLC / FRB	
RNG Facility CEQA Operational Emissions	

Appendix D Operational Emissions - Thermal Oxidizer Unit

Table D.3 AQIA Emission Rates - (Continuous Operation - emission rates constant among averaging times)

	1-Hour Aver	aging Period	8-Hour Averaging Period		24-Hour Averaging Period		Annual Averaging Period	
Pollutant	lb/hr ¹	g/s ²	lb/8-hr ³	lb/8-hr ³ g/s ⁴		g/s ⁶	lb/yr ⁷	g/s ⁸
NO2	1.054E+00	1.329E-01					9.23E+03	1.329E-01
SO2	5.177E+00	6.529E-01			1.243E+02	6.529E-01	3.20E+04	4.613E-01
CO	2.409E+00	3.038E-01	1.927E+01	3.038E-01				
PM10					5.162E+00	2.712E-02	1.88E+03	2.712E-02
PM2.5					5.162E+00	2.712E-02	1.88E+03	2.712E-02

¹ 1-Hour Averaging Period (lb/hr) = Emission Rate (lb/hr)

² 1-Hour Averaging Period (g/s) = 1-Hour Averaging Period (lb/hr) x 454 / 3,600

³ 8-Hour Averaging Period (lb/8-hr) = 1-Hour Averaging Period (lb/hr) x 8 Hours

⁴ 8-Hour Averaging Period (g/s) = 8-Hour Averaging Period (lb/8-hr) / 8 Hours x 454 / 3,600

⁵ 24-Hour Averaging Period (lb/24-hr) = 1-Hour Averaging Period (lb/hr) x 24 Hours

⁶ 24-Hour Averaging Period (g/s) = 24-Hour Averaging Period (lb/24-hr) / 24 Hours x 454 / 3,600

⁷ Annual Averaging Period (lb/yr) = 1-Hour Averaging Period (lb/hr) x 24 hours x 365 days

⁸ Annual Averaging Period (g/s) = Annual Averaging Period (lb/yr) / 8,760 Hours x 454 / 3,600

Bowerman Power LFG, LLC Facility:

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D **Operational Emissions - Thermal Oxidizer Unit**

Table D.4

Thermal Oxidizer Toxic Air Contaminant Emission Factors and Emissions

Toxic Air Contaminant	CAS No.	Molecular Weight (lb/lbmol)	Tail Gas 1 Inlet Concentration ¹ (ppbv)	Tail Gas 1 Emission Factor ² (lb/mmscf)	Natural Gas Emission Factor ³ (lb/mmscf)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (lb/yr)	
Vinyl Chloride	75014	62.5	271	8.94E-04		1.24E-04	1.09E+00	V4
1,1-Dichloroethene	75354	96.94	34.3	1.75E-04		2.44E-05	2.13E-01	V5
Methylene Chloride	75092	84.93	1203	5.39E-03		7.49E-04	6.56E+00	M13
1,1-Dichloroethane	75343	98.96	30.5	1.59E-04		2.21E-05	1.94E-01	D6
Chloroform	67663	119.38	8	5.04E-05		7.00E-06	6.13E-02	C11
1,2-Dichloroethane	107062	98.96	364	1.90E-03		2.64E-04	2.31E+00	E6
1,1,1-Trichloroethane	71556	133.4	16.9	1.19E-04		1.65E-05	1.45E-01	M8
Benzene	71432	78.11	3680	1.52E-02	5.80E-03	2.27E-03	1.99E+01	B1
Trichloroethylene	79016	131.4	207	1.44E-03		1.99E-04	1.75E+00	Т8
Toluene	108883	92.14	12901	6.27E-02	2.65E-02	9.47E-03	8.30E+01	Т3
Tetrachloroethene	127184	165.83	671	5.87E-03		8.16E-04	7.14E+00	P2
Chlorobenzene	108907	112.56	8062	4.79E-02		6.65E-03	5.83E+01	C10
Xylenes	1330207	106.16	8735	4.89E-02	1.97E-02	7.36E-03	6.45E+01	X1
Formaldehyde	50000				1.23E-02	3.53E-04	3.09E+00	F2
Total PAHs (excluding	1151				1.00E-04	2.87E-06	2.51E-02	P41
Naphthalene	91203				3.00E-04	8.60E-06	7.54E-02	P62
Acetaldehyde	75070				3.10E-03	8.89E-05	7.79E-01	A1
Acrolein	107028				2.70E-03	7.74E-05	6.78E-01	A3
Ammonia	7664417				3.20E+00	9.18E-02	8.04E+02	A9
Ethyl Benzene	100414				6.90E-03	1.98E-04	1.73E+00	E3
Hexane	110543				4.60E-03	1.32E-04	1.16E+00	H6

Stream ID	Component	Flowrate (scfm)
Tail Cas Stream 1	Total	2,315
fail Gas Stream 1	CH ₄	100.93
Tail Gas Stream 2	CH ₄	97.00
Supplemental Fuel		280

Tail Gas 1 Flowrate (scfm) 2,315 Natural Gas Flowrate (scfm) 477.93

¹ Tail Gas 1 Inlet Concentration (ppbv) from June 2022 LFG analysis.

² Tail Gas 1 Emission Factor (lb/mmscf) = Tail Gas 1 Inlet Concentration (ppbv) / 1,000 x Molecular Weight (lb/lbmol) / Molar Volume (scf/lbmol) x [1 - Control Efficiency (%)] Molar Volume 379 scf/lbmol, @ 60 Deg F

98% Rule 1150.1 Control Efficiency

³ TAC calculations assume that emissions from the methane component of the tail gas streams may be calculated from the default emission factors for natural gas combustion.

Emission Factors are from South Coast AQMD Default Emission Factors for Natural Gas Combustion in External Combustion Equipment rated between 10 and 100 mmBtu/hr

⁴ Hourly Emissions (lb/hr) = Tail Gas 1 Emission Factor (lb/mmscf) x Tail Gas 1 Flowrate (scfm) x 60 / 1,000,000 + Natural Gas Emission Factor (lb/mmscf) x Natural Gas Flowrate (scfm) x 60 / 1,000,000 ⁵ Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) x Hours per Day x Days per Year

Hours per Day 24

365

Days per Year

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB **RNG Facility CEQA Operational Emissions**

Appendix D **Operational Emissions - Thermal Oxidizer Unit**

Table D.5

Facility:

Thermal Oxidizer GHG Emission Factors and Emissions

Stream ID ¹	Stream Max Capacity ¹ (scfm)	Component	Component Vol.%	Component Flowrate ² (scfm)	GHG	Emission Factor ³ (lb/mmBtu)	Emission Factor ⁴ (lb/mmscf)	Annual Emissions ⁵ (lb/yr)	Daily Emissions (lb/day)	MT/yr	CO2e Eq ¹	CO2e ⁴ (MT/yr)
Tail Gas Stream 1	2 315	CU.	136%	100.93	CH ₄	2.2E-03	2.31	122.55	0.34	0.06	25	1.39
	2,515	CH4	4.50%	100.95	N ₂ O	2.20E-04	0.23	12.25	0.03	0.01	298	1.66
Tail Car Stream 2	885	CU	10.96%	97.00	CH ₄	2.2E-03	2.31	117.77	0.32	0.05	25	1.34
Tall Gas Stream 2		CH4			N ₂ O	2.20E-04	0.23	11.78	0.03	0.01	298	1.59
					CO ₂	1.17E+02	122,787.00	18,070,317.22	49,507.72	8,195.16	1	8,195.16
Supplemental Fuel	280				CH ₄	2.2E-03	2.31	339.96	0.93	0.15	25	3.85
					N ₂ O	2.20E-04	0.23	34.00	0.09	0.02	298	4.59
					•						Total CO2e (MT/vr)	8,209,58

Tail Gas Stream 1 and 2 flowrates and composition from Material Balance in Appendix B. Supplemental Fuel flowrate from Perennial.

All carbon dioxide derived from LFG is considered biogenic and does not result in a net increase in atmospheric carbon dioxide. All methane and N2O emissions are anthropogenic and are net increases in atmospheric GHG. Thus, for the tail gas streams, the combustion byproducts of methane and nitrous oxide are included in this analysis but carbon dioxide, both as a component of the tail gas streams and formed from combustion, are excluded.

² Component Flowrate (scfm) = Stream Max Capacity (scfm) x Component Vol.%

³ GHG calculations assume that emissions from the methane component of the tail gas streams may be calculated from the default emission factors for natural gas combustion.

Emission factors and CO2e Eq are from SCAQMD 'Combustion Emission Estimator'. http://www.aqmd.gov/docs/default-source/permitting/ceqa-2017/ghg-estimator-(2018-11).xlsx?sfvrsn=6 4 CO2, Tail Gas The CO₂ in the tail gas streams passes through the thermal oxidizer. Emission Factor (lb/mmscf) = Density (lb/scf) x 1,000,000 Density (lb/scf) = MW / Molar Volume 44.01 CO₂ MW lb/lbmol Molar Volume scf/lbmol, @ 60 Deg F 379 CH₄ / Supplemental Fuel Emission Factor (lb/mmscf) = Emission Factor (lb/mmBtu) x HHV (mmBtu/mmscf) HHV 1,050 mmBtu/mmscf 5 Tail Gas Annual Emissions (lb/yr) = Component Flowrate (scfm) x 60 / 1,000,000 x Hours per Day x Days per Year x Emission Factor (lb/mmscf) Supplemental Fuel Annual Emissions (lb/yr) = Stream Max Capacity (scfm) x 60 / 1,000,000 x Hours per Day x Days per Year x Emission Factor (lb/mmscf) Hours per Day 24

365 Days per Year

6 CO2e (MT/yr) = Annual Emissions (lb/yr) x CO2e Eq / 2,205

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D **Operational Emissions - Off-Spec Flare**

Data (Flare) Table D.6

	lare Equipment	Stream Max Capacity ¹ (scfm)	Stream Max Capacity ¹ (mmbtu/hr)	Hours per Day	Annual Capacity Factor (%)	Hours per Year ²	Gas Consumption ³ (mmscf/hr)	Gas Consumption ⁴ (mmscf/yr)
Pilot	: Gas (Natural Gas)	1.59	0.1	24	100%	8760	0.0000952	0.8343
	Tet	al I I a ant los control (con contrato o da col	0.1		Tatal Cas		0.00010	

Total Heat Input (mmbtu/hr) 0.1

Total Gas Consumption (mmscf/hr) 0.00010

¹ Pilot Gas Stream Max Capacity (mmBtu/hr) from Perennial (Appendix B).

Pilot Gas (Natural Gas)

Stream Max Capacity (scfm) = Stream Max Capacity (mmBtu/hr) / 60 / NG HHV (mmBtu/mmscf) x 1,000,000

NG HHV 1,050 mmbtu/mmscf

² Hours per Year = 24 Hours per Day x 365 Days per Year x Annual Capacity Factor (%)

³ Gas Consumption (mmscf/hr) = Stream Max Capacity (scfm) x 60 min/hr / 1,000,000

⁴ Gas Consumption (mmscf/yr) = Gas Consumption (mmscf/hr) x Hours per Day x Days per Year

Copyright © 2024, Yorke Engineering, LLC

Bowerman Power LFG, LLC

Appendix D Operational Emissions - Off-Spec Flare

Table D.7

Facility:

Flare Criteria Pollutant Emission Factors and Emissions

Criteria Pollutant	Flare Gas Content (ppmv)	Emission Factor ³ (lb/mmscf)	Emission Factor (lb/mmbtu)	Hourly Emissions ⁵ (lb/hr)	Daily Emissions ⁶ (lb/day)	Annual Emissions ⁷ (lb/yr)	Monthly Emissions ⁸ (lb/mo)	30-Day Average Emissions ⁹ (Ib/30-day)
NOx ¹			0.06	0.0060	0.14	52.56	4.46	0.15
CO ²			0.06	0.0060	0.14	52.56	4.46	0.15
VOC ²			0.006	0.0006	0.01	5.26	0.45	0.01
SOx ³		0.60		0.0001	0.001	0.50	0.04	0.001
PM10 ⁴		6.1		0.0006	0.01	5.09	0.43	0.01

¹ NOx emission factor from Rule 1118.1, Table 1, for "Other Flare Gas." The flare manufacturer has guaranteed that the flare will operate in compliance with this emission limit.

² The VOC and CO emission factors are the South Coast AQMD BACT/LAER determination for A/N 614468.

³ Pilot Gas

South Coast AQMD Default

⁴ The PM10 emission factor is the South Coast AQMD BACT/LAER determination for A/N 614468.

5 NOx, CO, and VOC

Hourly Emissions (lb/hr) = Emission Factor (lb/mmBtu) x Total Heat Input (mmBtu/hr)

SOx, Flare Gas

Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Flare Gas Consumption (mmscf/hr)

SOx, Pilot Gas

Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Pilot Gas Consumption (mmscf/hr)

PM10

Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Total Gas Consumption (mmscf/hr)

⁶ Daily Emissions (lb/day) = Hourly Emissions (lb/hr) x Hours per Day

⁷ Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) x Hours per Year

⁸ Monthly Emissions (lb/mo) = Hourly Emissions (lb/hr) x 24 Hours per Day x 31 Days per Month [less than 876 hours (maximum annual hours)]

⁹ 30-Day Average Emissions (lb/30-day) = Monthly Emissions (lb/mo) / 30

Copyright © 2024, Yorke Engineering, LLC

Bo

Facility: Bowerman Power LFG, LLC

owerman Power LFG, LLC / FRB	J
IC Excility CEOA Operational Emissions	

Appendix D **Operational Emissions - Off-Spec Flare**

Table D.8 AQIA Emission Rates

	1-Hour Aver	aging Period	8-Hour Averaging Period		24-Hour Averaging Period		Annual Averaging Period	
Pollutant	lb/hr ¹	g/s ²	lb/8-hr ³	g/s ⁴	lb/24-hr⁵	g/s ⁶	lb/yr ⁷	g/s ⁸
NO2	6.000E-03	7.567E-04					5.256E+01	7.567E-04
SO2	5.714E-05	7.206E-06			1.371E-03	7.206E-06	5.006E-01	7.206E-06
CO	6.000E-03	7.567E-04	4.800E-02	7.567E-04				
PM10					1.394E-02	7.326E-05	5.089E+00	7.326E-05
PM2.5					1.394E-02	7.326E-05	5.089E+00	7.326E-05

¹ 1-Hour Averaging Period (lb/hr) = Emission Rate (lb/hr)

² 1-Hour Averaging Period (g/s) = 1-Hour Averaging Period (lb/hr) x 454 / 3,600

³ 8-Hour Averaging Period (lb/8-hr) = 1-Hour Averaging Period (lb/hr) x 8 Hours

⁴ 8-Hour Averaging Period (g/s) = 8-Hour Averaging Period (lb/8-hr) / 8 Hours x 454 / 3,600

⁵ 24-Hour Averaging Period (lb/24-hr) = 1-Hour Averaging Period (lb/hr) x 24 Hours

⁶ 24-Hour Averaging Period (g/s) = 24-Hour Averaging Period (lb/24-hr) / 24 Hours x 454 / 3,600

⁷ Annual Averaging Period (lb/yr) = 1-Hour Averaging Period (lb/hr) x Annual Hours of Opeation : 8,760

Annual Operating Hours

⁸ Annual Averaging Period (g/s) = Annual Averaging Period (lb/yr) / 8,760 Hours x 454 / 3,600

Gas Consumption

(mmscf/yr)

0.8343

Gas Consumption

(mmscf/hr)

0.0001

Facility: Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D Operational Emissions - Off-Spec Flare

Table D.9 Flare Toxic Air Contaminant Emission Factors and Emissions

Toxic Air Contaminant	CAS No.	Emission Factor ¹ (lb/mmscf)	Hourly Emissions Controlled ² (lb/hr)	Annual Emissions Controlled ³ (lb/yr)	
Benzene	71432	0.159	1.51E-05	1.33E-01	B1
Ethylbenzene	100414	1.444	1.38E-04	1.20E+00	E3
Hexane	110543	0.029	2.76E-06	2.42E-02	H6
Toluene	108883	0.058	5.52E-06	4.84E-02	T3
Xylenes	1330207	0.029	2.76E-06	2.42E-02	X1
Formaldehyde	50000	1.169	1.11E-04	9.75E-01	F2
Acetaldehyde	75070	0.043	4.10E-06	3.59E-02	A1
Acrolein	107028	0.01	9.52E-07	8.34E-03	A3
Naphthalene	91203	0.011	1.05E-06	9.18E-03	P62
Total PAH (excluding Naphthalene)	1151	0.003	2.86E-07	2.50E-03	P41

¹ Emission Factors are from South Coast AQMD Default Emission Factors for Natural Gas Combustion in Flare ² Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Gas Consumption (mmscf/hr)

³ Annual Emissions (lb/yr) = Emission Factor (lb/mmscf) x Gas Consumption (mmscf/yr)

Date	Printed:	9/5/2024
Dute	r miceo.	5/5/2024

owerman Power LFG. LLC	/ FRB

RNG Facility CEQA Operational Emissions

Appendix D Operational Emissions - Off-Spec Flare

Table D.10 Flare GHG Emission Factors and Emissions

GHG	Emission Factor ¹ (lb/mmBtu)	Emission Factor ² (lb/mmscf)	Gas Consumption (mmscf/yr)	Daily Emissions (lb/day)	Annual Emissions ³ (lb/yr)	MT/yr	CO2e Eq ¹	CO2e ⁴ (MT/yr)
CO ₂	116.94	122,787		280.66	102,439.44	46.46	1	46.46
CH ₄	2.200E-03	2.31	0.83	0.0053	1.93	0.00	25	0.02
N ₂ O	2.200E-04	0.23		0.0005	0.19	0.00	298	0.03

Total CO2e (MT/yr) 46.51

¹ Emission factors and CO2e Eq are from SCAQMD 'Combustion Emission Estimator'.

http://www.aqmd.gov/docs/default-source/permitting/ceqa-2017/ghg-estimator-(2018-11).xlsx?sfvrsn=6

Fuel Type: Natural Gas

² Emission Factor (lb/mmscf) = Emission Factor (lb/mmBtu) x HHV (mmBtu/mmscf)

HHV 1,050 mmBtu/mmscf

³ Annual Emissions (lb/yr) = Emission Factor (lb/mmscf) x LFG Max Consumption (mmscf/yr)

⁴ CO2e (MT/yr) = Annual Emissions (lb/yr) x CO2e Eq / 2,205

Facility: Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions Appendix D Operational Emissions - Generator Set with ICE Table D.11 Data (Emergency ICE)

Engine Rating ¹ (hp)	Fuel Consumption ¹ (scf/hr)	Hours per Day / Hours per Month (M&T)	Hours per Year (M&T)	Fuel Consumption ² (mmscf/hr)	Fuel Consumption ³ (mmscf/yr)				
253	1,655	4.2	50	0.001655	0.0827				
1	¹ Engine Rating (hp) and Fuel Consumption (scf/hr) from manufacturer's specification at 100% load.								

Fuel Consumption (scf/hr) = Fuel Consumption (scf/hr) @ 905 mmBtu/mmscf x 905 mmBtu/mmscf / NG HHV (mmBtu/mmscf)

Fuel Consumption (20/m) = 1 del consumption (20/m) = 959 mmBtu/mmsch x 959 mmBtu/mms

NG HHV 1,050 mmBtu/mmscf

² Fuel Consumption (mmscf/hr) = Fuel Consumption (scf/hr) / 1,000,000

³ Fuel Consumption (mmscf/yr) = Fuel Consumption (mmscf/hr) x Hours per Year (M&T)

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D Operational Emissions - Generator Set with ICE

Table D.12

Emergency ICE Criteria Pollutant Emission Factors and Emissions

Criteria Pollutant	EPA Certified Emissions (g/bhp-hr)	Emission Factor (Ib/mmscf)	Hourly Emissions ³ (lb/hr)	Daily Emissions ⁴ (lb/day)	Annual Emissions ⁵ (lb/yr)	Monthly Emissions ⁶ (lb/mo)	30-Day Average Emission ⁷ (Ib/30-day)
NOx ¹	0.3		0.1672	0.70	8.36	0.70	0.02
CO ¹	0.5		0.2786	1.17	13.93	1.17	0.04
VOC1	0.049		0.0273	0.11	1.37	0.11	0.004
SOx ²		0.60	0.0010	0.004	0.05	0.004	0.0001
PM10 ²		10	0.0165	0.07	0.83	0.07	0.002

¹ Certification Emission Levels (g/bhp-hr) for EPA Family PORGB10.3ET1 from

https://www.epa.gov/system/files/documents/2024-02/large-spark-ignition-2011-present.xlsx

Note: VOC is shown as 0.0 g/bhp-hr. Emission calculations assume 0.049 g/bhp-hr.

Horsepower Rating and Fuel Consumption from Gas Engine Technical Data Sheet, Caterpillar DG 150 ICE, at 100% load with no fan

² South Coast AQMD Default Emission Factor (lb/mmscf) for Natural Gas Combustion in Internal Combustion Engine

³ NOx, CO, and VOC

Hourly Emissions (lb/hr) = EPA Certified Emissions (g/bhp-hr) x Engine Rating (bhp) / 454 g/lb

SOx and PM10

Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Fuel Consumption (mmscf/hr)

⁴ Daily Emissions (lb/day) = Hourly Emissions (lb/hr) x Hours per Day

⁵ Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) x Hours per Year

⁶ Monthly Emissions (lb/mo) = Hourly Emissions (lb/hr) x Hours per Month

⁷ 30-Day Average Emissions (lb/30-day) = Monthly Emissions (lb/mo) / 30

Copyright © 2024, Yorke Engineering, LLC

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D **Operational Emissions - Generator Set with ICE**

Table D.13 AQIA Emission Rates

	1-Hour Aver	aging Period	8-Hour Averaging Period		24-Hour Averaging Period		Annual Averaging Period	
Pollutant	lb/hr ¹	g/s ²	lb/8-hr ³	g/s ⁴	lb/24-hr⁵	g/s ⁶	lb/yr ⁷	g/s ⁸
NO2	1.672E-01	2.108E-02					8.359E+00	1.203E-04
SO2	9.929E-04	1.252E-04			4.170E-03	2.191E-05	4.965E-02	7.147E-07
CO	2.786E-01	3.514E-02	1.170E+00	1.845E-02				
PM10					6.950E-02	3.652E-04	8.274E-01	1.191E-05
PM2.5					6.950E-02	3.652E-04	8.274E-01	1.191E-05

¹ 1-Hour Averaging Period (lb/hr) = Emission Rate (lb/hr)

² 1-Hour Averaging Period (g/s) = 1-Hour Averaging Period (lb/hr) x 454 / 3,600

3 -Hour Averaging Period (b/s-hr) = 1-Hour Averaging Period (b/hr) x 047 / 3,000
 3 -Hour Averaging Period (b/s-hr) = 1-Hour Averaging Period (b/hr) x Daily/Monthly M&T Hours
 Daily/Monthly Maintenance & Testing Hours
 4 - 4
 8-Hour Averaging Period (g/s) = 8-Hour Averaging Period (b/8-hr) / 8 Hours x 454 / 3,600

⁵ 24-Hour Averaging Period (lb/24-hr) = 1-Hour Averaging Period (lb/hr) x Daily/Monthly M&T Hours

⁶ 24-Hour Averaging Period (g/s) = 24-Hour Averaging Period (lb/24-hr) / 24 Hours x 454 / 3,600

⁷ Annual Averaging Period (lb/yr) = 1-Hour Averaging Period (lb/hr) x Annual Maintenance & Testing Hours

Annual Maintenance & Testing Hours 50

⁸ Annual Averaging Period (g/s) = Annual Averaging Period (lb/yr) / 8,760 Hours x 454 / 3,600

Facility: Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB **RNG Facility CEQA Operational Emissions**

Appendix D **Operational Emissions - Generator Set with ICE**

Table D.14 Emergency ICE Toxic Air Contaminant Emission Factors and Emissions

		Emission Factor	Hourly Emissions	Annual Emissions
Toxic Air Contaminant	CAS No	Lincontrolled ¹	Controlled ²	Controlled ³
Toxic Air containinaire	CAS NO.	(lb/mmscf)	(lh/hr)	(lh/yr)
Benzene	71432	1.61	2.66E-03	1.33E-01
1,3-Butadiene	106990	0.676	1.12E-03	5.59E-02
Carbon Tetrachloride	56235	0.0181	3.00E-05	1.50E-03
Ethylene Dibromide	106934	0.0217	3.59E-05	1.80E-03
1,2-Dichloroethane	107062	0.0115	1.90E-05	9.52E-04
Formaldehyde	50000	20.9	3.46E-02	1.73E+00
Methylene Chloride	75092	0.042	6.95E-05	3.48E-03
Benz(a)anthracene	56553	0	0.00E+00	0.00E+00
Benzo(a)pyrene	50328	0	0.00E+00	0.00E+00
Benzo(b)fluoranthene	205992	0	0.00E+00	0.00E+00
Benzo(k)fluoranthene	207089	0	0.00E+00	0.00E+00
Chrysene	218019	0	0.00E+00	0.00E+00
Indeno(1,2,3-c,d)pyrene	193395	0	0.00E+00	0.00E+00
Naphthalene	91203	0.099	1.64E-04	8.19E-03
Acetaldehyde	75070	2.85	4.72E-03	2.36E-01
Acrolein	107028	2.68	4.44E-03	2.22E-01
Ammonia	7664417	3.2	5.30E-03	2.65E-01
Chloroform	67663	0.014	2.32E-05	1.16E-03
Ethylbenzene	100414	0.0253	4.19E-05	2.09E-03
n-Hexane	110543	0	0.00E+00	0.00E+00
Methanol	67561	3.12	5.16E-03	2.58E-01
Styrene	100425	0.0121	2.00E-05	1.00E-03
Toluene	108883	0.569	9.42E-04	4.71E-02
Xylene	1330207	0.199	3.29E-04	1.65E-02

¹ Emission Factors are from South Coast AQMD Default Emission Factors for Natural Gas Combustion in Lean-Burn ICE ² Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) x Hourly Fuel Consumption (mmscf/hr)

³ Annual Emissions (lb/yr) = Emission Factor (lb/mmscf) x Annual Fuel Consumption (mmscf/yr)

Fuel Consump	tion Fuel Consumption
(mmscf/hi) (mmscf/yr)
0.001655	0.0827

Bowerman	Power LFG	LLC / FRB	

RNG Facility CEQA Operational Emissions

Appendix D Operational Emissions - Generator Set with ICE

Table D.15 Emergency ICE GHG Emission Factors and Emissions

GHG	Emission Factor ¹ (lb/mmBtu)	Emission Factor ² (lb/mmscf)	Fuel Consumption (mmscf/yr)	Daily Emissions (lb/day)	Annual Emissions ³ (lb/yr)	MT/yr	CO2e Eq ¹	CO2e ⁴ (MT/yr)
CO ₂	116.94	122,787.00		27.83	10,159.75	4.61	1	4.61
CH ₄	2.2E-03	2.31	0.0827	0.0005	0.19	0.00	25	0.002
N ₂ O	2.20E-04	0.23		0.0001	0.02	0.00	298	0.003
Total CO2e (MT/yr) 4.61							4.61	

¹ Emission factors and CO2e Eq are from SCAQMD 'Combustion Emission Estimator'.

http://www.aqmd.gov/docs/default-source/permitting/ceqa-2017/ghg-estimator-(2018-11).xlsx?sfvrsn=6

Fuel Type: Natural Gas

² Emission Factor (lb/mmscf) = Emission Factor (lb/mmBtu) x HHV (mmBtu/mmscf)

HHV 1,050 mmBtu/mmscf

³ Annual Emissions (lb/yr) = Emission Factor (lb/mmscf) x Fuel Consumption (mmscf/yr)

⁴ CO2e (MT/yr) = Annual Emissions (lb/yr) x CO2e Eq / 2,205

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D Baseline Emissions - Flare Station

Table D.16 Flare Data (Flare Station)

FI

Flare ID	LFG Max Capacity (scfm)	LFG Max Capacity (mmBtu/hr) ¹	LFG HHV ² (mmBtu/mmscf)	Hours per Day	Days per Year	LFG Max Consumption ³ (mmscf/hr)	LFG Max Consumption ⁴ (mmscf/yr)
are Station	6,000	180	550	24	365	0.3600	3,153.60

¹ Prorating I-6 project (A/N 614468) heat rating at 120 mmBtu/hr and fuel rate of 4,000 scfm to 6,000 scfm for baseline comparison

² Per Flare I-6 project, A/N 614468.

³ LFG Max Consumption (mmscf/hr) = LFG Max Capacity (scfm) x 60 min/hr / 1,000,000

⁴ LFG Max Consumption (mmscf/yr) = LFG Max Consumption (mmscf/hr) x Hours per Day x Days per Year

Table D.17 Flare I-6 Criteria Pollutant Emission Factors and Emissions

Criteria Pollutant	LFG Content (ppmv)	Emission Factor (lb/mmscf)	Emission Factor (lb/mmBtu)	Hourly Emissions ⁵ (lb/hr)	Daily Emissions ⁶ (lb/day)	Annual Emissions ⁷ (lb/yr)	Monthly Emissions ⁸ (lb/mo)	30-Day Average Emissions ⁹ (Ib/30-day)
NOx ¹			0.025	4.5000	108.00	39,420.00	3,285.00	109.50
CO ¹			0.06	10.8000	259.20	94,608.00	7,884.00	262.80
VOC ²			0.006	1.0800	25.92	9,460.80	788.40	26.28
60v ³	85	14.354		5.1673	124.01	-		
30%	60	10.132		3.6475	87.54	31,952.04	2,662.67	88.76
PM10 ⁴		6.1		2.1960	52.70	19,236.96	1,603.08	53.44

¹ NOx and CO emission factors from Rule 1118.1, Table 1. The flare manufacturer has guaranteed that the flares will operate in compliance with these emission limits.

² The VOC emission factor is the South Coast AQMD BACT/LAER determination for A/N 614468. The flare manufacturer has guaranteed that the flares will operate in compliance with these emission limits. This emission factor is lower than the 0.038 lb/mmBtu required by Rule 1118.1, Table 1.

³ The South Coast AQMD BACT/LAER determination for A/N 614468 requires LFG sulfur content no higher than: 85 ppmv, averaged daily; and 60 ppmv, averaged monthly.

Hourly and daily emissions are estimated from 85 ppmv; annual, monthly, and 30-day average emissions are estimated from 60 ppmv.

Emission Factor (lb/mmscf) = LFG Content (ppmv) x SOx MW (lb/lbmol) / Molar Volume (scf/lbmol)

SOx MW 64 lb/lbmol

Molar Volume 379 scf/lbmol, @ 60 Deg F

⁴ The South Coast AQMD BACT/LAER determination for A/N 614468 requires PM10 emissions to be no higher than 6.1 lb/mmscf.

5 NOx, CO, and VOC

Hourly Emissions (lb/hr) = Emission Factor (lb/mmBtu) x LFG Max Capacity (mmBtu/hr) SOx and PM10

Hourly Emissions (lb/hr) = Emission Factor (lb/mmscf) / 1,000,000 x LFG Max Capacity (scfm) x 60 min/hr

⁶ Daily Emissions (lb/day) = Hourly Emissions (lb/hr) x Hours per Day

⁷ Annual Emissions (lb/yr) = Hourly Emissions (lb/hr) x Hours per Day x Days per Year

⁸ Monthly Emissions (lb/mo) = Annual Emissions (lb/yr) / 12

⁹ 30-Day Average Emissions (lb/30-day) = Monthly Emissions (lb/mo) / 30

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D Baseline Emissions Flare I-6

 Table D.18
 Flare I-6 GHG Emission Factors and Emissions (Flare I-6)

GHG ¹	Emission Factor ² (lb/mmBtu)	Emission Factor ³ (lb/mmscf)	LFG Max Consumption (mmscf/yr)	Annual Emissions ⁴ (lb/yr)	CO2e Eq2	CO2e⁵ (MT/yr)
CH4	7.050E-03	3.878E+00	2 152 60	12,228	25	139
N2O	1.390E-03	7.645E-01	5,155.00	2,411	298	326

Total CO2e (MT/yr) 464

All carbon dioxide derived from LFG is considered biogenic and does not result in a net increase in atmospheric carbon dioxide. All methane and N₂O

¹ emissions are anthropogenic and are net increases in atmospheric GHG. Thus, for the tail gas streams, the combustion byproducts of methane and nitrous oxide are included in this analysis but carbon dioxide, both as a component of the tail gas streams and formed from combustion, are excluded.

² Emission factors and CO2e Eq are from SCAQMD 'Combustion Emission Estimator' for LFG.

http://www.aqmd.gov/docs/default-source/permitting/ceqa-2017/ghg-estimator-(2018-11).xlsx?sfvrsn=6

³ Emission Factor (lb/mmscf) = Emission Factor (lb/mmBtu) x HHV (mmBtu/mmscf)

⁴ Annual Emissions (lb/yr) = Emission Factor (lb/mmscf) x LFG Max Consumption (mmscf/yr)

⁵ CO2e (MT/yr) = Annual Emissions (lb/yr) x CO2e Eq / 2,205

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Operational Emissions

Appendix D Baseline GHG Comparison

Table D.19Baseline GHG Comparison

GHGs	Baseline (MT/yr) ¹	Construction (MT/yr)	Operation ¹ (MT/yr)	Total ² (MT/yr)	Expected Net Change in Emissions (MT/yr)	Threshold (MT/yr)	Significance
Anthropogenic CO ₂	0	1,174.7	8,394.3	8,433	8,433	-	-
CH_4	6	0.06	0.74	0.74	-4.80	-	-
N ₂ O	1	0.06	0.06	0.06	-1.03	-	-
R	0	0.4	0.98	0.99	0.99	-	-
Anthropogenic Total (as CO ₂ e)	464	1,194	8,432	8,472	8,007	10,000	LTS

Sources: SCAQMD 2008b, Yorke 2024 (Appendix D), CalEEMod version 2022.1.1.28.

¹All carbon dioxide derived from LFG is considered biogenic and does not result in a net increase in atmospheric carbon dioxide. All methane and N2O emissions are anthropogenic and are net increases in atmospheric GHG. Thus, for the tail gas streams, the combustion byproducts of methane and nitrous oxide are included in this analysis but carbon dioxide, both as a component of the tail gas streams and formed from combustion, are excluded.

²Total CO₂e emissions comprises annual operational emissions plus construction emissions amortized over 30 years.

APPENDIX E – OPERATIONAL AQIA MODELING RESULTS

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Source Locations

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.1Source Parameters

Source ID	Source Description	Source Type	Orientation	UTM E (m)	UTM N (m)	Release Height (ft)	Exit Temperature (Deg F)	Inside Diameter (ft)	Exhaust Flow (acfm)	Exit Velocity (mps)
FLARE ¹	Flare	Point	Vertical	434,255.01	3,730,882.74	50	1,018	11.77	150,000	7.003
ICE	CAT DG150 Backup Generator ICE	Point	Vertical	434,246.91	3,730,967.73	6.15	1,304	0.4167	1,177	43.852
TOU ¹	PEI Thermal Oxidizer - Pilot Gas	Point	Vertical	434,255.52	3,730,894.15	50	1,000	5.6	39,000	8.044

1. FLARE and TOU exit temperature, inside diameter, and exhaust flow rate are provided by Perenial (email 04/23/2024; Appendix B).

2. All other physical source parameters are from Equipment Data sheets (Appendix B).

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.2Models

Dispersion Modeling
AERMOD v 23132
AERMET v 16216
AERMAP v 18081
Software Interface:
Lakes Environmental Software; AERMOD View™, Version 12.0.0

Facility: Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.3Dispersion Model Options/Assumptions

Parameter		Va	lue		Comments			
Control Pathway								
Regulatory Options	Default	×	Non-Default					
Output Type	Concentration	×	Dry Deposition					
	Total Deposition		Wet Deposition					
	Dry Depletion		Wet Depletion					
Depletion Options	Disable Dry Depletion		Disable Wet Depletion					
Pollutant	Other							
Averaging Time Options	1-Hour (H1H); 8-Ho	our (H1H); 24-Hour	(H1H); Annual (Avg)		Model output also includes the max annual average for each MET year.			
Dispersion Coefficient	Rural		Urban	X	Per current South Coast AQMD guidance, urban is the default, and the default urban area population for projects in Orange County is 3,010,232 persons. The project includes a single urban source group that includes all emission sources.			
	Elevated X							
Terrain Height Options	Non-Default Regulatory Options		-					
	Flat		Flat & Elevated	×				
Receptor Elevations / Hill Heights	Run AERMOD using	g the AERMAP Rece	eptor Output file (*.R	(OU)				

Facility: Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.3Dispersion Model Options/Assumptions

Parameter		Va	lue		Comments
Source Pathway					
Building Downwash	Include	×	Exclude		
Background Concentrations	Include		Exclude	X	This project does not consider background concentrations.
	CO1	Includes: FLCO18,	ICECO1, TOCO18		
	CO8	Includes: FLCO18,	ICECO8, TOCO18		
	NO21	Includes: FLNO21,	ICENO21, TONO21	AN	
	NO2ANN	Includes: FLNO2AN, ICENO2AN, TONO21AN			
Source Groups	PM24	Includes: FLPM24, ICEPM24, TOPM24AN			
	PMANN	Includes: FLPMAN, ICEPMAN, TOPM24AN			
	SO21	Includes: FLSO2124, ICESO21, TOSO21H24H			
	SO224	Includes: FLSO2124, ICESO224, TOSO21H24H		21H24H	
	SO2ANN	Includes: FLSO2AN, ICESO2AN, TOSO2AN		2AN	
Urban Groups	١				Run includes a single urban source group that includes all emission sources.
Variable Emissions	N/A	A			Run assumes continuous operation.

Facility: Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.3Dispersion Model Options/Assumptions

Parameter	Value				Comments
Receptor Pathway					
Flagpole Receptors	Include		Exclude	X	Per current South Coast AQMD guidance, all receptors should be set to ground-level.
	Grid Origin: Centro	id of Sources Poly	gon		
Multi-Tier Receptor Grid	Tie	er	Distance from Center (m)	Tier Spacing (m)	
	1 2		1000 5000	50 250	
Plant Boundary	Receptor Spacing: 100 m				The facility encompasses an area on the order of 600 acres. Primary boundary receptors are located at the vertices. Current South Coast AQMD guidance allows 100 meter receptor spacing for facilities with total area greater than or equal to 100 acres. Onsite gridded receptors are disabled.

Copyright © 2024, Yorke Engineering, LLC

Facility: Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.3Dispersion Model Options/Assumptions

Parameter	Value				Comments		
Meteorology Pathway							
Meteorological Data	Station: Mission Vi Years: 2011, 2012, Base Elevation of S	iejo 2013, 2014, 2016 urface Station: 170	m		Meteorological data downloaded from the South Coast AQMD website.		
Terrain Pathway							
Data File	USGS_NED_13_n34	w118.tif			NED GEOTIFF Digital Terrain Files. Resolution: 1/3-arcsecond (10 meters).		
AERMAP Domain Options	Not Specified			X	Elevations and hill heights are calculated from a region measuring 10,000 meters by 10,000 meters centered on the facility. Source and building base elevations were set to 800 ft to match existing flare station elevation. This was done since the hill is going to be filled and leveled off with the existing flare station.		

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.4 AQIA Results

Standard	Background Data Source	2020	2021	2022	Background Concentration (Conc. Units)	Modeled Concentration (ug/m3)	Modeled Concentration (Conc. Units)	Bkg. + Modeled Concentration (Conc. Units)	Ambient Air Quality Standard (Conc. Units)	CEQA Significant Change Threshold (Conc. Units)	Result	
NO2; Concentration	on Units = ppb											
California 1-Hr	SCAQMD; 17	70.9	67.1	53	70.9	1.55	0.82	71.7	180		Bkg. + Modeled Concentration < AAQS	
California Annual	SCAQMD; 17	13.3	12.4	11.8	13.3	0.05	0.03	13.3	30		Bkg. + Modeled Concentration < AAQS	
Federal Annual	SCAQMD; 17	13.3	12.4	11.8	13.3	0.05	0.03	13.3	53		Bkg. + Modeled Concentration < AAQS	
SO2; Concentratio	on Units = ppb											
California 1-Hr	EPA; Site ID 060371103	3.8	2.2	6.5	6.5	6.13E+00	2.3408	8.8	250		Bkg. + Modeled Concentration < AAQS	
Federal 1-Hr	EPA; Site ID 060371103	3	2	2	2.3	5.59E+00	2.1352	4.4	75		Bkg. + Modeled Concentration < AAQS	
California 24-Hr	EPA; Site ID 060371103	0.9	1.2	1.2	1.2	1.60E+00	0.6118	1.8	40		Bkg. + Modeled Concentration < AAQS	
CO; Concentration	n Units = ppm											
California 1-Hr	SCAQMD; 17	2.3	2.1	2.4	2.4	3.29E+00	0.0029	2.4	20		Bkg. + Modeled Concentration < AAQS	
Federal 1-Hr	SCAQMD; 17	2.3	2.1	2.4	2.4	3.29E+00	0.0029	2.4	35		Bkg. + Modeled Concentration < AAQS	
California 8-Hr	SCAQMD; 17	1.7	1.5	1.4	1.7	1.48E+00	0.0013	1.7	9		Bkg. + Modeled Concentration < AAQS	
Federal 8-Hr	SCAQMD; 17	1.7	1.5	1.4	1.7	1.48E+00	0.0013	1.7	9		Bkg. + Modeled Concentration < AAQS	
PM10; Concentrat	10: Concentration Units = ug/m3											

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E **Air Quality Impact Analysis**

24-Hr	SCAQMD; 17	120	115	90	120	6.76E-02	0.068	 	2.5	Modeled Concentration < CEQA Significant Change Threshold
Annual	SCAQMD; 17	23.9	22.9	22.3	23.9	1.02E-02	0.010	 	1	Modeled Concentration < CEQA Significant Change Threshold
PM2.5; Concentra	tion Units = ug/m3									
24-Hr	SCAQMD; 17	27.10	36.70	22.10	28.63	6.76E-02	0.068	 	2.5	Modeled Concentration < CEQA Significant Change Threshold

C (ppb) = C (ug/m3) x 24.45 / MW

C (ppm) = C (ug/m3) x 0.02445 / MW

MW NO2 46 MW SO2 64

MW CO

28 'SCAQMD' data from the District's historical Air Quality Data Tables.

http://www.aqmd.gov/home/air-quality/historical-air-quality-data/historical-data-by-year

'EPA' data from EPA's Monitor Values Report.

https://www.epa.gov/outdoor-air-quality-data/monitor-values-report

Copyright © 2024, Yorke Engineering, LLC

Facility:

Bowerman Power LFG, LLC

Bowerman Power LFG, LLC / FRB RNG Facility CEQA Air Quality Impact Analysis

Appendix E Air Quality Impact Analysis

Table E.5AQIA Results

Pollutant	Averaging Time	Federal or State Standard	Modeled Concentration (Concentration Units)	Background Concentration (Concentration Units)	Modeled + Background Concentration (Concentration Units)	CEQA Threshold (Concentration Units)	Significance
NO ₂	1-Hour	California ¹	0.825	70.9	71.7	180	LTS
(Concentration Units =	Annual	Federal	0.027	13.3	13.3	53	LTS
ppb)	Allilual	California	0.027	0.027 13.3		30	LTS
<u> </u>	1 Hour	Federal	0.003	2.4	2.4	35	LTS
CO (Concentration Units =	1-11001	California	0.003	2.4	2.4	20	LTS
(Concentration Units –	8-Hour	Federal	0.001	1.7	1.7	9	LTS
pp)	8-110ui	California	0.001	1.7	1.7	9	LTS
SO_2	1 Шоли	Federal	2.135	2.3	4.4	75	LTS
(Concentration Units =	1-Hour	California	2.341	6.5	8.8	250	LTS
ppb)	24-Hour	California	0.612	1.2	1.8	40	LTS
PM ₁₀	24-Hour		0.068	-	-	2.5	
(Concentration Units = µg/m3)	Annual	SCAQMD CEQA Significant	0.010	_	_	1	LTS, modeled concentration is less than
$PM_{2.5}$ (Concentration Units = $\mu g/m3$)	24-Hour	Change Threshold	0.068	_	_	2.5	significant change threshold.

1. The modeled concentration presented is the model predicted maximum hourly value using full NO2 conversion.

Averagi ng	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	3.19917	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	4/11/2012, 5
8-HR	1ST	1.50984	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	0.98609	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 24
1-HR	4TH	2.79405	ug/m^3	433951.84	3731078.73	308.33	0.00	541.06	4/11/2012, 3
1-HR	8TH	2.59975	ug/m^3	434001.47	3731173.25	305.20	0.00	541.06	4/28/2016, 4
ANNUAL		0.18394	ug/m^3	434112.52	3731309.62	270.41	0.00	541.06	
ANNUAL Y1		0.22546	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y2		0.19619	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y3		0.18405	ug/m^3	434149.96	3731412.58	247.13	0.00	541.06	
ANNUAL Y4		0.17150	ug/m^3	434112.52	3731309.62	270.41	0.00	541.06	
ANNUAL Y5		0.17907	ug/m^3	433866.04	3730826.01	279.49	0.00	541.06	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: CO1

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: CO8

Averagi ng Deriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	2.82719	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	4/11/2012, 5
8-HR	1ST	1.35803	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	0.84976	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 24
1-HR	4TH	2.57706	ug/m^3	433866.04	3730826.01	279.49	0.00	541.06	12/5/2011, 17
1-HR	8TH	2.36042	ug/m^3	433841.07	3730779.21	273.50	0.00	541.06	2/2/2011, 2
ANNUAL		0.12960	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y1		0.16249	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y2		0.14060	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y3		0.12445	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y4		0.11753	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y5		0.11815	ug/m^3	433866.04	3730826.01	279.49	0.00	541.06	

Averagi ng Poriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Stort
1-HR	1ST	1.52785	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	4/11/2012, 5
8-HR	1ST	0.71340	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	0.47848	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 24
1-HR	4TH	1.38355	ug/m^3	434001.47	3731173.25	305.20	0.00	541.06	2/18/2011, 19
1-HR	8TH	1.30127	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	4/28/2016, 3
ANNUAL		0.09995	ug/m^3	434112.52	3731309.62	270.41	0.00	541.06	
ANNUAL Y1		0.12023	ug/m^3	434106.28	3731281.54	279.00	0.00	541.06	
ANNUAL Y2		0.10495	ug/m^3	434112.52	3731309.62	270.41	0.00	541.06	
ANNUAL Y3		0.10185	ug/m^3	434149.96	3731412.58	247.13	0.00	541.06	
ANNUAL Y4		0.09408	ug/m^3	433851.47	3730973.25	271.94	0.00	541.06	
ANNUAL Y5		0.09920	ug/m^3	433866.04	3730826.01	279.49	0.00	541.06	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: NO21

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: NO2ANN

Averagi ng Deriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	1.15553	ug/m^3	433847.32	3730875.93	277.70	0.00	541.06	12/22/2011, 23
8-HR	1ST	0.52274	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	0.32756	ug/m^3	433852.03	3730327.98	266.22	0.00	538.37	12/2/2016, 24
1-HR	4TH	1.03793	ug/m^3	433837.95	3730922.73	280.60	0.00	541.06	11/30/2014, 22
1-HR	8TH	0.97907	ug/m^3	433841.07	3730779.21	273.50	0.00	541.06	2/2/2011, 2
ANNUAL		0.03872	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y1		0.05023	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	
ANNUAL Y2		0.04062	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y3		0.03502	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y4		0.03848	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y5		0.03354	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	

		-							
Averagi ng Boriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Stort
1-HR	1ST	0.23838	ug/m^3	433847.32	3730875.93	277.70	0.00	541.06	12/22/2011, 23
8-HR	1ST	0.10958	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	0.06762	ug/m^3	433852.03	3730327.98	266.22	0.00	538.37	12/2/2016, 24
1-HR	4TH	0.21369	ug/m^3	433866.04	3730826.01	279.49	0.00	541.06	12/5/2011, 17
1-HR	8TH	0.20173	ug/m^3	433841.07	3730779.21	273.50	0.00	541.06	2/2/2011, 2
ANNUAL		0.00831	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y1		0.01087	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	
ANNUAL Y2		0.00872	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y3		0.00746	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y4		0.00824	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y5		0.00731	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: PM24

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: PMANN

Averagi ng Deriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Stort
1-HR	1ST	0.23540	ug/m^3	433847.32	3730875.93	277.70	0.00	541.06	12/22/2011, 23
8-HR	1ST	0.10637	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	0.06667	ug/m^3	433852.03	3730327.98	266.22	0.00	538.37	12/2/2016, 24
1-HR	4TH	0.21142	ug/m^3	433837.95	3730922.73	280.60	0.00	541.06	11/30/2014, 22
1-HR	8TH	0.19925	ug/m^3	433841.07	3730779.21	273.50	0.00	541.06	2/2/2011, 2
ANNUAL		0.00788	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y1		0.01022	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	
ANNUAL Y2		0.00826	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y3		0.00713	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y4		0.00783	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y5		0.00682	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	

		-							
Averagi ng Boriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Stort
1-HR	1ST	5.65921	ug/m^3	433847.32	3730875.93	277.70	0.00	541.06	12/22/2011, 23
8-HR	1ST	2.55532	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	1.60168	ug/m^3	433852.03	3730327.98	266.22	0.00	538.37	12/2/2016, 24
1-HR	4TH	5.08232	ug/m^3	433837.95	3730922.73	280.60	0.00	541.06	11/30/2014, 22
1-HR	8TH	4.78581	ug/m^3	433841.07	3730779.21	273.50	0.00	541.06	2/2/2011, 2
ANNUAL		0.18924	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y1		0.24535	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	
ANNUAL Y2		0.19849	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y3		0.17124	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y4		0.18812	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y5		0.16378	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: SO21

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions

Averagi ng Deriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	5.65833	ug/m^3	433847.32	3730875.93	277.70	0.00	541.06	12/22/2011, 23
8-HR	1ST	2.55438	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	1.60141	ug/m^3	433852.03	3730327.98	266.22	0.00	538.37	12/2/2016, 24
1-HR	4TH	5.08176	ug/m^3	433837.95	3730922.73	280.60	0.00	541.06	11/30/2014, 22
1-HR	8TH	4.78508	ug/m^3	433841.07	3730779.21	273.50	0.00	541.06	2/2/2011, 2
ANNUAL		0.18912	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y1		0.24516	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	
ANNUAL Y2		0.19835	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y3		0.17114	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y4		0.18800	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y5		0.16363	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	

		-							
Averagi ng Deriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	3.99772	ug/m^3	433847.32	3730875.93	277.70	0.00	541.06	12/22/2011, 23
8-HR	1ST	1.80464	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	3/20/2011, 16
24-HR	1ST	1.13142	ug/m^3	433852.03	3730327.98	266.22	0.00	538.37	12/2/2016, 24
1-HR	4TH	3.59040	ug/m^3	433837.95	3730922.73	280.60	0.00	541.06	11/30/2014, 22
1-HR	8TH	3.38076	ug/m^3	433841.07	3730779.21	273.50	0.00	541.06	2/2/2011, 2
ANNUAL		0.13360	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y1		0.17319	ug/m^3	434012.68	3731180.13	304.48	0.00	541.06	
ANNUAL Y2		0.14013	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y3		0.12090	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y4		0.13281	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	
ANNUAL Y5		0.11559	ug/m^3	433928.44	3731025.69	311.07	0.00	541.06	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: SO2ANN

Averagi ng	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	3.29032	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	12/1/2011, 6
8-HR	1ST	1.70925	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 16
24-HR	1ST	1.14463	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 24
1-HR	4TH	2.98252	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	12/23/2011, 1
1-HR	8TH	2.51218	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	5/13/2014, 5
ANNUAL		0.22653	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.27101	ug/m^3	434050.12	3731228.49	170.00	0.00	170.00	
ANNUAL Y2		0.23735	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.22493	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.21870	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	
ANNUAL Y5		0.20553	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions Concentration - Source Group: CO1

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: CO8

Averagi ng Deriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	3.00281	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	8/23/2011, 6
8-HR	1ST	1.48092	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 16
24-HR	1ST	0.84944	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 24
1-HR	4TH	2.82941	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	8/23/2011, 6
1-HR	8TH	2.26027	ug/m^3	433866.04	3730826.01	170.00	0.00	170.00	12/5/2011, 17
ANNUAL		0.15151	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.18432	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y2		0.16153	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.14772	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.14192	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	
ANNUAL Y5		0.13424	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

Averagi ng Boriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Stort
1-HR	1ST	1.55180	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	12/1/2011, 6
8-HR	1ST	0.83348	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	4/29/2011, 8
24-HR	1ST	0.60195	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 24
1-HR	4TH	1.50215	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	4/10/2012, 21
1-HR	8TH	1.49870	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	2/2/2011, 20
ANNUAL		0.12479	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.14836	ug/m^3	434050.12	3731228.49	170.00	0.00	170.00	
ANNUAL Y2		0.12981	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.12483	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.12196	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	
ANNUAL Y5		0.11432	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: NO21

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions Concentration - Source Group: NO2ANN

Averagi ng Deriod	Rank	k Peak Units		X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	1.25069	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	8/23/2011, 6
8-HR	1ST	0.53984	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 16
24-HR	1ST	0.29860	ug/m^3	433852.03	3730327.98	170.00	0.00	170.00	12/2/2016, 24
1-HR	4TH	1.14290	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	12/23/2011, 1
1-HR	8TH	0.93389	ug/m^3	433866.04	3730826.01	170.00	0.00	170.00	12/5/2011, 17
ANNUAL		0.03058	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.04002	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y2		0.03459	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.02788	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.02641	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y5		0.02480	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

		•							
Averagi ng Poriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Stort
1-HR	1ST	0.25769	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	8/23/2011, 6
8-HR	1ST	0.11468	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 16
24-HR	1ST	0.06142	ug/m^3	433852.03	3730327.98	170.00	0.00	170.00	12/2/2016, 24
1-HR	4TH	0.23664	ug/m^3	434001.47	3731173.25	170.00	0.00	170.00	12/23/2011, 1
1-HR	8TH	0.19290	ug/m^3	433866.04	3730826.01	170.00	0.00	170.00	12/5/2011, 17
ANNUAL		0.00776	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.00990	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y2		0.00860	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.00726	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.00686	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y5		0.00651	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: PM24

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: PMANN

Averagi ng	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	0.25483	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	8/23/2011, 6
8-HR	1ST	0.10984	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 16
24-HR	1ST	0.06078	ug/m^3	433852.03	3730327.98	170.00	0.00	170.00	12/2/2016, 24
1-HR	4TH	0.23264	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	12/23/2011, 1
1-HR	8TH	0.19046	ug/m^3	433866.04	3730826.01	170.00	0.00	170.00	12/5/2011, 17
ANNUAL		0.00618	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.00809	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y2		0.00699	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.00562	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.00533	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y5		0.00500	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

Averagi ng Period	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Stort
1-HR	1ST	6.12714	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	8/23/2011, 6
8-HR	1ST	2.63909	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 16
24-HR	1ST	1.46009	ug/m^3	433852.03	3730327.98	170.00	0.00	170.00	12/2/2016, 24
1-HR	4TH	5.58907	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	12/23/2011, 1
1-HR	8TH	4.58338	ug/m^3	433866.04	3730826.01	170.00	0.00	170.00	12/5/2011, 17
ANNUAL		0.14780	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.19376	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y2		0.16741	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.13451	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.12742	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y5		0.11957	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: SO21

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: S0224

Averagi ng Deriod	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date,
1-HR	1ST	6.12631	ug/m^3	433975.24	3731131.77	170.00	0.00	170.00	8/23/2011, 6
8-HR	1ST	2.63767	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	3/20/2011, 16
24-HR	1ST	1.45990	ug/m^3	433852.03	3730327.98	170.00	0.00	170.00	12/2/2016, 24
1-HR	4TH	5.58796	ug/m^3	434012.68	3731180.13	170.00	0.00	170.00	12/23/2011, 1
1-HR	8TH	4.58267	ug/m^3	433866.04	3730826.01	170.00	0.00	170.00	12/5/2011, 17
ANNUAL		0.14734	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y1		0.19323	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y2		0.16694	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y3		0.13403	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y4		0.12697	ug/m^3	434106.28	3731281.54	170.00	0.00	170.00	
ANNUAL Y5		0.11913	ug/m^3	433928.44	3731025.69	170.00	0.00	170.00	

		1
(m)	ZHILL (m)	Peak Date, Stort
0.00	170.00	8/23/2011, 6
0.00	170.00	3/20/2011, 16
0.00	170.00	12/2/2016, 24
0.00	170.00	12/23/2011, 1
0.00	170.00	12/5/2011, 17
0.00	170.00	
0.00	170.00	
0.00	170.00	
0.00	170.00	
0.00	170.00	
0.00	170.00	
	2FLAG (m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ZFLAG ZFILL (m) (m) 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00 0.00 170.00

C:\Lakes\AERMOD View\Bowerman_RNG_Facility_CEQA_HRA\Bowerman_RNG_Fac Air Quality Impact Analysis - FRB RNG Facility Operational Emissions
Concentration - Source Group: SO2ANN

			Ca	rbon Mone	oxide ^a						Ozone ^b						Nitro	gen Dioxide ^c			Sulfur Dio	xide ^d
	2021										Numb	er of Days S	tandard Exe	ceeded				-				
									Fourth	Old		,	1997	Current					Annual			99th
			No.	Max	Max	No.	Max	Max	High	Federal	Current	2008	Federal	State	Current	No.	Max	98th	Average	No.	Max	Percentile
c			Days	1-Hour	8-Hour	Days	1-Hour	8-Hour	8-Hour	1-Hour	Federal	Federal	8-Hour	1-Hour	State	Days	1-Hour	Percentile	(AAM)	Days	1-Hour	1-Hour
Sour	ce/Receptor Area	AQS Station	of	Conc.,	Conc.,	of	Conc.,	Conc.,	Conc.,	0.12	8-Hour	8-Hour	0.08	0.09	8-Hour	of	Conc.,	1-Hour	Conc.,	of	Conc.,	Conc.,
No.	Location	ID	Data	ppm	ppm	Data	ppm	ppm	ppm	ppm	0.070 ppm	0.075 ppm	ppm	ppm	0.070 ppm	Data	ppb	Conc., ppb	ppb	Data	ppb	ppb
LOS	ANGELES COUNTY																					• •
1	Central LA	060371103	364	2.0	1.6	351	0.099	0.085	0.068	0	2	1	1	1	2	356	77.8	57.3	17.7	365	2.2	2.0
2	Northwest Coastal LA County	060370113	174	1.5	1.0	356	0.095	0.082	0.059	0	1	1	0	1	1	360	60.6	41.6	10.0			
3	Southwest LA County*	060375005	251	1.7	1.3	245	0.059	0.049	0.047	0	0	0	0	0	0	256	62.8	47.5	7.2	254	7.7	4.3
4	South Coastal LA County 1	060374002																				
4	South Coastal LA County 2	060374004																				
4	South Coastal LA County 4	060374009				356	0.086	0.064	0.060	0	0	0	0	0	0	361	59.0	55.3	12.8	360	5.9	4.2
4	I-710 Near Road	060374008														351	91.5	76.0	25.2			
6	West San Fernando Valley	060371201	363	2.6	1.9	357	0.110	0.083	0.080	0	31	16	0	4	33	361	54.2	42.6	10.4			
7	East San Fernando Valley	060374010				349	0.110	0.089	0.079	0	17	7	1	6	17	359	65.4	49.4	13.9			
8	West San Gabriel Valley	060372005	364	1.9	1.6	362	0.104	0.087	0.081	0	25	13	1	12	32	364	77.3	52.0	13.6			
9	East San Gabriel Valley 1	060370002	355	1.5	1.4	355	0.108	0.086	0.077	0	21	13	1	20	22	357	78.1	51.0	14.8			
9	East San Gabriel Valley 2	060370016	353	1.4	0.9	356	0.125	0.096	0.090	1	54	31	11	39	58	352	68.6	47.6	10.3			
10	Pomona/Walnut Valley	060371701	353	1.7	1.3	352	0.120	0.092	0.089	0	41	21	11	27	43	364	71.4	56.0	17.9			
11	South San Gabriel Valley	060371602	362	1.8	1.5	357	0.104	0.074	0.068	0	3	0	0	2	3	361	72.2	54.7	17.5			
12	South Central LA County	060371302	364	4.3	3.7	345	0.085	0.076	0.062	0	1	1	0	0	1	364	68.2	55.9	14.0			
13	Santa Clarita Vallev	060376012	365	1.0	0.7	360	0.125	0.103	0.097	1	61	47	21	30	63	365	56.9	35.2	9.9			
ORA	NGE COUNTY					İ																
16	North Orange County	060595001	365	2.3	1.3	352	0.103	0.075	0.070	0	2	0	0	2	3	346	63.8	50.8	12.7			
17	Central Orange County	060590007	363	21	15	355	0.089	0.068	0.063	0	0	0	0	0	0	356	67.1	53.2	12.4			
17	I-5 Near Road	060590008	340	2.3	1.7											343	72.3	55.8	18.9			
19	Saddleback Valley	060592022	365	1.0	0.8	363	0.105	0.081	0.078	0	8	4	0	2	8		72.5					
RIV	ERSIDE COUNTY	000072022	505	110	0.0	202	01100	0.001	01070	v	0		Ū	-	0							
23	Metropolitan Riverside County 1	060658001	365	21	1.8	340	0.117	0.097	0.091	0	55	32	12	20	57	341	52.0	50.7	14.3	363	21	1.8
23	Metropolitan Riverside County 1	060658005	365	2.1	1.6	357	0.116	0.094	0.093	0	53	33	14	20	50	365	53.3	45.1	11.7	505	2.1	1.0
23	Parris Vallay	060656001	505	2.0	1.0	300	0.117	0.004	0.095	0	55	28	14	20	60	505	55.5	45.1	11.7			
24	Laka Elainana Anaa	060650001	264			254	0.117	0.094	0.091	0	14	20	0	19	46	257	42.7	26.4	7.0			
25	Lake Eisillore Area	060659001	504	0.9	0.8	264	0.118	0.097	0.090	0	10	6	0	10	40	337	45.7	30.4	7.0			
20	Denie (General Construction Construction)	060650016				304	0.095	0.085	0.078	0	10	0	0	1	11							
29	Banning/San Gorgonio Pass	060650012				354	0.139	0.116	0.102	4	80	56	24	41	82	365	56.8	47.4	8.7			
30	Coachella Valley I**	060655001	365	0.8	0.4	357	0.110	0.092	0.088	0	35	15	7	10	38	360	35.6	32.9	6.8			
30	Coachella Valley 2**	060652002				352	0.099	0.078	0.076	0	18	6	0	2	24							
30	Coachella Valley 3**	060652005																				
SAN	BERNARDINO COUNTY																					
32	Northwest San Bernardino Valley	060711004	348	1.3	1.1	359	0.124	0.100	0.097	0	78	50	22	42	81	354	64.6	49.4	14.8			
33	CA-60 Near Road	060710027														350	80.2	72.9	30.0			
33	I-10 Near Road	060710026	365	2.8	1.4											365	80.8	68.3	28.6			
34	Central San Bernardino Valley 1	060712002	362	1.9	1.4	356	0.125	0.103	0.099	1	81	56	26	44	83	364	67.2	60.7	19.0	364	5.0	1.9
34	Central San Bernardino Valley 2	060719004	359	2.0	1.6	355	0.142	0.112	0.105	6	98	74	40	66	101	362	56.3	48.9	15.1			
35	East San Bernardino Valley	060714003				361	0.145	0.119	0.112	7	114	93	50	74	118							
37	Central San Bernardino Mountains	060710005				345	0.148	0.120	0.107	7	110	91	55	65	111							
38	East San Bernardino Mountains	060718001																				
	DISTRICT MAXIMUM ^e			4.3	3.7		0.148	0.120	0.112	7	114	93	55	74	118		91.5	76.0	30.0		7.7	4.3
	SOUTH COAST AIR BASIN ^f			4.3	3.7		0.148	0.120	0.112	12	130	113	68	91	133		91.5	76.0	30.0		7.7	4.3

*Incomplete data due to site closure in September 2021. **Salton Sea Air Basin -- Pollutant not monitored ppm - Parts Per Million in air, by volume ppb - Parts Per Billion in air, by volume AAM - Annual Arithmetic Mean

a) The federal and state 8-hour CO standards (9 ppm and 9.0 ppm, respectively) along with the federal and state 1-hour CO standards (35 ppm and 20 ppm, respectively) were not exceeded.

b) The current (2015) O₃ federal standard became effective December 28, 2015.

c) The NO2 federal 1-hour standard is 100 ppb and the annual standard is 53.4 ppb. The state 1-hour and annual standards are 180 ppb and 30 ppb, respectively.

d) The federal SO₂ 1-hour standard is 75 ppb. The state 1-hour and annual standards are 250 ppb and 40 ppb, respectively.

e) District Maximum is the maximum value calculated at any one station in the South Coast AQMD jurisdiction.

f) Statistics are calculated with a dataset that aggregates the highest concentration at any station in the South Coast Air Basin for each day and pollutant. Therefore, concentrations are the maximum value observed at any station in the South Coast Air Basin. Number of daily exceedances are the total number of days that the indicated concentration is exceeded at any station in the South Coast Air Basin.

Air Quality Management District 21865 Copley Drive Diamond Bar, CA 91765-4182 www.aqmd.gov

For information on the current standard levels and most recent revisions please refer to "Appendix II – Current Air Quality" of the 2022 Air Quality Management Plan, which can be accessed at www.aqmd.gov/2022aqmp. A map showing the source/receptor area boundaries and station locations is available at www.aqmd.gov/aqcard2021map.

				Suspend	ed Particulates	s PM10 ^g		Fine Particulates PM2.5 ⁱ					L	ead ^k	PM10 \$	Sulfate ¹
	2021				N. 60.5						No. (%) Samples					
				-	No. (%) Samp	oles Exceeding	_ Annual Average				Exceeding	Annual Average		Max 3-Month		Max
				Max	Federal	State	Conc. ^h		Max	98th Percentile	Federal 24-Hour	Conc. ^j	Max Monthly	Rolling		24-Hour
Source/	Receptor Area	AQS Station	No. Days	24-Hour Conc.,	24-Hour	24-Hour	(AAM),	No. Days	24-Hour Conc	., 24-Hour Conc.,	Standard	(AAM),	Average Conc.	, Average Conc.,	No. Days	Conc.,
No.	Location	ID	of Data	µg/m ³	150 μg/m ³	50 μg/m ³	µg/m ³	of Data	μg/m ³	µg/m³	35 μg/m ³	µg/m ³	μg/m ³	μg/m ³	of Data	µg/m ³
LOS A	NGELES COUNTY															
1	Central LA	060371103	60	64	0 (0%)	3 (5%)	25.5	363	61	44.8	12 (3%)	12.77	0.012	0.012	61	4.4
2	Northwest Coastal LA County	060370113														
3	Southwest LA County*	060375005	31	33	0 (0%)	0 (0%)	17.7						0.003	0.004		
4	South Coastal LA County 1	060374002						119	41.2	31.2	1 (1%)	10.93				
4	South Coastal LA County 2	060374004	60	48	0 (0%)	0 (0%)	22.7	364	42.9	32.8	4 (1%)	11.47	0.006	0.007		
4	South Coastal LA County 4	060374009														
4	I-710 Near Road	060374008						365	84.6	34.8	7 (2%)	13.01				
6	West San Fernando Valley	060371201						120	55.5	36.1	3 (3%)	10.06				
7	East San Fernando Valley	060374010														
8	West San Gabriel Valley	060372005						119	63.6	29.9	2 (2%)	10.74				
9	East San Gabriel Valley 1	060370002	61	79	0 (0%)	11 (18%)	32.8	120	61.9	36.1	3 (3%)	11.43			61	4.8
9	East San Gabriel Valley 2	060370016	358	121	0 (0%)	9 (3%)	26.8									
10	Pomona/Walnut Valley	060371701														
11	South San Gabriel Valley	060371602						122	66	47.9	3 (2%)	13.07	0.011	0.010		
12	South Central LA County	060371302						349	102.1	42.5	12 (3%)	13.41	0.007	0.009		
13	Santa Clarita Valley	060376012	60	47	0 (0%)	0 (0%)	19.9									
ORAN	JE COUNTY															
16	North Orange County	060595001														
17	Central Orange County	060590007	361	115	0 (0%)	12 (3%)	22.9	364	54.4	36.7	9 (2%)	11.44			61	3.8
17	I-5 Near Road	060590008														
19	Saddleback Valley	060592022	60	35	0 (0%)	0 (0%)	15.6	122	28.7	24.5	0 (0%)	8.27				
RIVER	SIDE COUNTY		ĺ													
23	Metropolitan Riverside County 1	060658001	121	76	0 (0%)	16 (13%)	34.2	364	82.1	36.7	10 (3%)	12.58	0.008	0.010	122	3.4
23	Metropolitan Riverside County 3	060658005	362	132	0 (0%)	170 (47%)	49.6	364	77.6	39.7	13 (4%)	14.28				
24	Perris Valley	060656001														
25	Lake Elsinore Area	060659001	360	89	0 (0%)	4 (1%)	21.4									
26	Temecula Valley	060650016														
29	Banning/San Gorgonio Pass	060650012	61	48	0 (0%)	0 (0%)	20.7									
30	Coachella Valley 1**	060655001	361	100	0 (0%)	9 (2%)	21.4	122	13.5	12.6	0 (0%)	6.2				
30	Coachella Valley 2**	060652002	345	123	0 (0%)	30 (9%)	32.3	120	18	14.2	0 (0%)	8.15			121	3.3
30	Coachella Valley 3**	060652005	359	147	0 (0%)	69 (19%)	39.1									
SAN BI	ERNARDINO COUNTY		İ													
32	Northwest San Bernardino Valley	060711004	358	123	0 (0%)	16 (4%)	31.7									
33	CA-60 Near Road	060710027						362	65.4	43.6	13 (4%)	14.48				
33	I-10 Near Road	060710026														
34	Central San Bernardino Valley 1	060712002	53	73	0 (0%)	4 (8%)	32.1	120	55.1	33.4	2 (2%)	12.07			54	3.6
34	Central San Bernardino Valley 2	060719004	364	111	0 (0%)	79 (22%)	39.3	120	57.9	34.2	1 (1%)	11.9	0.013	0.008		
35	East San Bernardino Valley	060714003	59	44	0 (0%)	0 (0%)	23.2									
37	Central San Bernardino Mountains	060710005	59	33	0 (0%)	0 (0%)	15.8									
38	East San Bernardino Mountains	060718001			′			59	24.5	21.5	0 (0%)	7.04				
	DISTRICT MAXIMUM ^m			147	0	170	49.6		102.1	47.9	13	14.48	0.013	0.012		4.8
	SOUTH COAST AIR BASIN ⁿ			132	0	179	49.6		102.1	47.9	20	14.48	0.013	0.012		4.8
*Incomr	alate data due to site closure in Sentember 2021		** Salton Sea Air	Bacin		ua/m ³ Mianaan	ma nor onhio motor	ofair		AAM Annual Ar	ithmatic Maan			Pollutant not m	mitored	-

g) PM10 statistics listed above are based on combined Federal Reference Method (FRM) and Federal Equivalent Method (FEM) data. High PM10 (≥ 155 µg/m³) data recorded in the Coachella Valley and the Basin (due to high winds) are excluded because they likely meet the exclusion criteria specified in the U.S. EPA Exceptional Event Rule. Exceptional event demonstrations will be submitted to U.S. EPA for events that have regulatory significance.

h) State annual average PM10 standard is 20 μg/m³. Federal annual PM10 standard (50 μg/m³) was revoked in 2006.

i) PM2.5 statistics listed above represent FRM data only with the exception of Central Orange County, Metropolitan Riverside County 1, Metropolitan Riverside County 2, I-710 Near Road, and CA-60 Near Road, and CA-60 Near Road, and CA-60 Near Road, where FEM PM2.5 measurements are used to supplement missing FRM measurements as outlined in the U.S. EPA Response Letter (dated October 31, 2022) to the South Coast AQMD PM2.5 Continuous Monitor Comparability Assessment and Request for Waiver (available with a Public Records Request). PM2.5 concentrations above the 24-hour standard attributed to fireworks are excluded because they likely meet the exclusion criteria specified in the U.S. EPA Exceptional Event Rule. Exceptional event demonstrations will be submitted to U.S. EPA for events that have regulatory significance.

j) Both Federal and State standards are 12.0 µg/m³.

k) Lead is measured in Total Suspended Particulate (TSP) samples. Federal lead standard is 3-months rolling average (0.15 µg/m³); state standard is monthly average (1.5 µg/m³). Note 3-month averages include data from November and December 2020. Higher lead concentrations were recorded at near-source monitoring sites immediately downwind of stationary lead sources. Maximum monthly and 3-month rolling averages recorded at near-source sites were 0.083 µg/m³ and 0.057 µg/m³, respectively. Lead standards were not exceeded at any site.

State 24-hour sulfate standard is 25 µg/m³. There is no federal standard for sulfate.

m) District Maximum is the maximum value calculated at any one station in the South Coast AQMD jurisdiction.

n) Statistics are calculated with a dataset that aggregates the highest concentration at any station in the South Coast Air Basin. Number of daily exceedances are

the total number of days that the indicated concentration is exceeded at any station in the South Coast Air Basin.

			Ca	rbon Mon	oxide ^a						Ozone ^b						Nitro	gen Dioxide ^c			Sulfur Dio	xide ^d
	2022										Numb	er of Days S	Standard Exc	ceeded								
									Fourth	Old	Current	2008	1997	Current	Current				Annual			99th
			No.	Max	Max	No.	Max	Max	High	Federal	Federal	Federal	Federal	State	State	No.	Max	98th	Average	No.	Max	Percentile
c			Days	1-Hour	8-Hour	Days	1-Hour	8-Hour	8-Hour	1-Hour	8-Hour	8-Hour	8-Hour	1-Hour	8-Hour	Days	1-Hour	Percentile	(AAM)	Days	1-Hour	1-Hour
Sou	rce/Receptor Area	AQS Station	of	Conc.,	Conc.,	of	Conc.,	Conc.,	Conc.,	> 0.12	> 0.070	> 0.075	> 0.08	> 0.09	> 0.070	of	Conc.,	1-Hour	Conc.,	of	Conc.,	Conc.,
NO.	Location	ID	Data	ppm	ppm	Data	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Data	ppb	Conc., ppb	ppb	Data	ppb	ppb
LOS	S ANGELES COUNTY																		10.5			
1	Central LA	060371103	365	1.7	1.5	362	0.138	0.090	0.073	1	6	2	1	1	6	364	75.1	56.9	18.5	361	6.5	2.3
2	Northwest Coastal LA County	060370113				335	0.081	0.070	0.058	0	0	0	0	0	0	364	51.4	44.5	11.4			
4	South Coastal LA County 1*	060374002																				
4	South Coastal LA County 2*	060374004																				
4	South Coastal LA County 3	060374006																				
4	South Coastal LA County 4	060374009				359	0.108	0.077	0.058	0	1	1	0	1	1	363	58.1	47.5	12.8	357	6.1	4.4
4	I-710 Near Road ^{##}	060374008														365	95.0	76.0	25.1			
6	West San Fernando Valley	060371201	364	2.2	1.8	358	0.110	0.096	0.078	0	23	11	2	7	24	364	54.7	42.1	10.2			
7	East San Fernando Valley	060374010				360	0.106	0.091	0.082	0	13	9	1	6	15	363	54.2	47.2	12.9			
8	West San Gabriel Valley	060372005	364	1.6	1.3	361	0.143	0.102	0.081	1	22	11	2	12	23	364	65.9	50.2	13.3			
9	East San Gabriel Valley 1*	060370002	260	1.3	0.9	257	0.111	0.080	0.075	0	11	3	0	6	11	260	47.9	44.3	13.0			
9	East San Gabriel Valley 2	060370016	361	0.9	0.6	359	0.143	0.101	0.094	1	60	40	17	46	61	365	54.2	35.9	7.9			
10	Pomona/Walnut Valley	060371701	363	1.6	1.1	348	0.131	0.096	0.088	1	46	26	12	28	49	361	58.4	50.1	17.0			
11	South San Gabriel Valley	060371602	356	1.6	1.5	349	0.123	0.091	0.070	0	2	2	1	3	3	362	64.5	53.7	17.0			
12	2 South Central LA County	060371302	359	3.4	3.0	358	0.111	0.085	0.064	0	1	1	1	1	1	365	64.9	55.0	14.4			
13	Santa Clarita Valley	060376012	364	1.5	0.6	355	0.129	0.114	0.095	1	66	43	18	28	68	364	51.5	33.3	9.1			
OR/	ANGE COUNTY																					
16	North Orange County	060595001	364	2.5	1.4	357	0.106	0.087	0.070	0	3	1	1	1	4	364	57.7	45.1	12.2			
17	Central Orange County	060590007	357	2.4	1.4	358	0.102	0.076	0.060	0	1	1	0	1	1	364	53.0	47.8	11.8			
17	I-5 Near Road ^{##}	060590008	363	2.6	1.9											358	62.0	52.0	18.9			
19	Saddleback Valley*	060592022	211	1.2	1.0	206	0.110	0.088	0.074	0	5	2	1	1	6							
RIV	ERSIDE COUNTY																					
23	Metropolitan Riverside County 1	060658001	365	3.3	1.2	351	0.122	0.095	0.092	0	70	43	14	30	72	358	55.9	47.7	13.2	357	6.7	2.9
23	Metropolitan Riverside County 3	060658005	364	1.6	1.2	361	0.120	0.094	0.087	0	57	33	9	19	58	365	47.4	42.2	10.8			
25	Lake Elsinore Area	060659001	362	0.9	0.6	345	0.121	0.091	0.086	0	37	27	5	17	37	364	37.2	32.2	7.1			
26	Temecula Valley	060650016				361	0.087	0.079	0.070	0	3	2	0	0	4							
29	Banning/San Gorgonio Pass	060650012				362	0.116	0.100	0.093	0	56	39	14	30	59	360	51.5	45.6	8.3			
30	Coachella Valley 1 [‡]	060655001	354	1.1	0.5	358	0.106	0.089	0.084	0	39	24	3	7	43	365	37.5	32.5	6.3			
30	Coachella Valley 2 [‡] *	060652002				109	0.072	0.069	0.066	0	0	0	0	0	0							
30	Coachella Valley 3 [‡]	060652005																				
SAN	N BERNARDINO COUNTY					l																
32	Northwest San Bernardino Valley	060711004	353	1.1	0.8	364	0.155	0.100	0.098	1	67	50	25	45	69	363	53.3	45.3	15.3			
33	CA-60 Near Road ^{##}	060710027														365	84.6	67.4	28.7			
33	I-10 Near Road ^{##}	060710026	365	1.3	1.0											363	80.2	61.2	25.5			
34	Central San Bernardino Valley 1	060712002	355	1.6	1.0	347	0.144	0.107	0.095	1	68	49	17	44	70	359	68.7	50.5	17.7	350	2.7	2.1
34	Central San Bernardino Valley 2	060719004	352	1.7	1.4	355	0.128	0.105	0.103	3	96	70	35	60	103	362	52.6	44.9	15.7			
35	East San Bernardino Valley	060714003				362	0.135	0.109	0.103	2	104	77	32	63	106							
37	Central San Bernardino Mountains	060710005				364	0.143	0.122	0.105	4	100	83	52	61	102							
38	East San Bernardino Mountains	060718001																				
	DISTRICT MAXIMUM ^e			3.4	3.0	ĺ	0.155	0.122	0.105	4	104	83	52	63	106		95.0	76.0	28.7		6.7	4.4
	SOUTH COAST AIR BASIN ^f			3.4	3.0	ĺ	0.155	0.122	0.105	7	123	105	65	88	126		95.0	76.0	28.7		6.7	4.4

*Incomplete data due to site closure or modification in 2022. ¹ Salton Sea Air Basin -- Pollutant not monitored ppm - Parts Per Million in air, by volume ppb - Parts Per Billion in air, by volume AAM - Annual Arithmetic Mean

a) The federal and state 8-hour CO standards (9 ppm and 9.0 ppm, respectively) along with the federal and state 1-hour CO standards (35 ppm and 20 ppm, respectively) were not exceeded.

b) The current (2015) O₃ federal standard became effective December 28, 2015.

c) The NO2 federal 1-hour standard is 100 ppb and the annual standard is 0.0534 ppb). The state 1-hour and annual standards are 0.18 ppm and 0.030 ppm, respectively.

d) The federal SO₂ 1-hour standard is 75 ppb (0.075 ppm). The state standards are 1-hour average SO₂ > 0.25 ppm (250 ppb) and 24-hour average SO₂ > 0.04 ppm (40 ppb).

e) District Maximum is the maximum value calculated at any one station in the South Coast AQMD jurisdiction.

f) Exceedance statistics are calculated with a dataset that aggregates the highest concentration at any station in the South Coast Air Basin for each day and pollutant. Number of daily exceedances are the total number of days that

the indicated concentration is exceeded at any station in the South Coast Air Basin. Statistics in concentration units are simply the maxium value at any station in the South Coast Air Basin. ##

Four near-road sites measuring one or more of the pollutants PM2.5, CO and/or NO2 are operating near the following freeways: 1-5, I-10, CA-60 and I-710.

For information on the current standard levels and most recent revisions please refer to "Appendix II - Current Air Quality" of the 2022 Air Quality Management Plan, which can be accessed at http://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan#. A map showing the source/receptor area boundaries and station locations is available at www.aqmd.gov/aqcard2022map. The South Coast AQMD Monitoring Network Plan is available at https://www.aqmd.gov/home/air-quality/clean-air-plans/monitoring-network-plan.

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, CA 91765-4182 AQMD www.aqmd.gov

				Suspend	led Particulates	PM10 ^g			1	Fine Particulates I	PM2.5 ⁱ		Le	ad ^k	PM10 8	Sulfate ¹
	2022										No. (%) Samples					
				-	No. (%) Samp	oles Exceeding	Annual Average				Exceeding	Annual Average		Max 3-Month		Max
				Max	Federal	State	Conc. ^h		Max	98th Percentile	Federal 24-Hour	Conc. ^j	Max Monthly	Rolling		24-Hour
Source/	Receptor Area	AQS Station	No. Days	24-Hour Conc.,	24-Hour	24-Hour	(AAM),	No. Days	24-Hour Conc.	, 24-Hour Conc.,	Standard	(AAM),	Average Conc.,	Average Conc.,	No. Days	Conc.,
No.	Location	ID	of Data	µg/m ³	$> 150 \ \mu g/m^{3}$	$> 50 \ \mu g/m^3$	µg/m ³	of Data	µg/m ³	µg/m³	$> 35 \mu g/m^{3}$	µg/m³	μg/m ³	µg/m³	of Data	µg/m³
LOS A	NGELES COUNTY															
1	Central LA	060371103	360	60	0 (0%)	4 (1%)	28.9	361	33.7	21.9	0 (0%)	10.94	0.008	0.007	61	5.8
2	Northwest Coastal LA County	060370113														
4	South Coastal LA County 1*	060374002						55	20.0	18	0 (0%)	9.92				
4	South Coastal LA County 2*	060374004	20	48	0 (0%)	0 (0%)	25.5	120	26.1	20	0 (0%)	10.66	0.007	0.006		
4	South Coastal LA County 3	060374006	355	128.0	0 (0%)	33 (9%)	34.4									
4	South Coastal LA County 4	060374009	363	57	0 (0%)	2 (1%)	24.7	22	28.8	28.8	0 (0%)	10.80				
4	I-710 Near Road ^{##}	060374008						364	39.0	25.5	1 (0%)	11.91				
6	West San Fernando Valley	060371201						121	20.5	19.5	0 (0%)	8.81				
7	East San Fernando Valley	060374010														
8	West San Gabriel Valley	060372005						120	22.1	19	0 (0%)	9.11				
9	East San Gabriel Valley 1*	060370002	43	98	0 (0%)	7 (16%)	37.9	76	18.4	17.8	0 (0%)	9.98			44	8.4
9	East San Gabriel Valley 2	060370016	358	83	0 (0%)	6 (2%)	24.6									
10	Pomona/Walnut Valley	060371701														
11	South San Gabriel Valley	060371602						115	53.8	25.6	1 (1%)	11.32	0.007	0.007		
12	South Central LA County	060371302						365	52.8	32.6	6 (2%)	12.25	0.010	0.008		
13	Santa Clarita Valley	060376012	61	36	0 (0%)	0 (0%)	18.5									
ORAN	GE COUNTY															
16	North Orange County	060595001														
17	Central Orange County	060590007	360	90	0 (0%)	7 (2%)	22.3	365	33.1	22.1	0 (0%)	9.87			56	9.6
17	I-5 Near Road ^{##}	060590008														
19	Saddleback Valley*	060592022	34	31	0 (0%)	0 (0%)	15.3									
RIVER	SIDE COUNTY															
23	Metropolitan Riverside County 1	060658001	357	153	0 (0%)	55 (15%)	37.0	365	38.5	23.2	1 (0%)	10.80	0.007	0.006	119	4.3
23	Metropolitan Riverside County 3	060658005	360	149	0 (0%)	141 (39%)	45.4	365	32.1	26.2	0 (0%)	11.49				
25	Lake Elsinore Area	060659001	365	91	0 (0%)	1 (0%)	19.8									
26	Temecula Valley	060650016														
29	Banning/San Gorgonio Pass	060650012	51	52	0 (0%)	2 (4%)	25.0									
30	Coachella Valley 1 [‡]	060655001	362	432	4 (1%)	16 (4%)	25.3	120	31.2	16.1	0 (0%)	6.32				
30	Coachella Valley 2* [‡]	060652002	110	160	1 (1%)	11 (10%)	36.6	13	21.3	21.3	0 (0%)	13.92			36	2.7
30	Coachella Valley 3 [‡]	060652005	338	428	10 (3%)	58 (17%)	41.8									
SAN B	ERNARDINO COUNTY															
32	Northwest San Bernardino Valley	060711004	360	144	0 (0%)	8 (2%)	29.3									
33	CA-60 Near Road ^{##}	060710027						361	41.8	26.4	1 (0%)	12.20				
33	I-10 Near Road ^{##}	060710026														
34	Central San Bernardino Valley 1	060712002	60	62	0 (0%)	8 (13%)	31.5	120	38.1	28.1	1 (1%)	10.89			61	4.7
34	Central San Bernardino Valley 2	060719004	360	177	1 (0%)	65 (18%)	38.0	118	40.1	25.8	2 (2%)	11.26	0.009	0.008		
35	East San Bernardino Valley	060714003	61	50	0 (0%)	0 (0%)	22.0									
37	Central San Bernardino Mountains	060710005	52	49	0 (0%)	0(0%)	15.6									
38	East San Bernardino Mountains	060718001						30	22.1	22.1	0 (0%)	6.85				
	DISTRICT MAXIMUM ^m			432	10	141	45.4		53.8	32.6	6	13.92	0.010	0.008		9.6
	SOUTH COAST AIR BASIN ⁿ			177	1	168	45.4		53.8	32.6	9	12.25	0.010	0.008		9.6
*Incom	plete data due to site closure or modification in 20	122	[‡] Salton Sea Air I	Rasin		ug/m ³ Microor	ams per cubic meter (fair		AAM - Annual Ari	ithmetic Mean			Pollutant not me	onitored	

lata due to site closure or modification in 2022.

* Salton Sea Air Basin

µg/m3 - Micrograms per cubic meter of air

Pollutant not monitored

PM10 statistics listed above are based on combined Federal Reference Method (FRM) and Federal Equivalent Method (FEM) data. High PM10 (\geq 155 µg/m³) data recorded in the Coachella Valley and the Basin (due to high winds) are excluded because they likely meet the exclusion criteria specified in the U.S. EPA Exceptional Event Rule. Exceptional event demonstrations will be submitted to U.S. EPA for events that have regulatory significance.

h) State annual average (AAM) PM10 standard is > 20 µg/m³. Federal annual PM10 standard (AAM > 50 µg/m³) was revoked in 2006.

PM2.5 statistics listed above represent FRM data only with the exception of Central Orange County, Metropolitan Riverside County, South Constal LA County 2, South Central LA County, I-710 Near Road, cA-60 Near Road, and East San Bernardino Mountains, where FEM or SPM PM2.5 measurements are used to supplement i) missing FRM measurements. PM2.5 concentrations above the 24-hour standard attributed to fireworks are excluded because they likely meet the exclusion criteria specified in the U.S. EPA Exceptional Event Rule. Exceptional event demonstrations will be submitted to U.S. EPA for events that have regulatory significance.

j) Both Federal and State standards are annual average (AAM) > 12.0 µg/m³.

Lead is measured in Total Suspended Particulate (TSP) samples. Federal lead standard is 3-months rolling average > 0.15 µg/m³; state standard is monthly average > 1.5 µg/m³. Note 3-month averages include data from November and December 2021. Higher lead concentrations were recorded at near-source monitoring sites immediately downwind of stationary lead sources. Maximum monthly and 3-month rolling averages recorded at near-source sites were 0.055 µg/m³ and 0.037 µg/m³, respectively. Lead standards were not exceeded at any site.

l) State 24-hour sulfate standard is > 25 μ g/m³. There is no federal standard for sulfate.

m) District Maximum is the maximum value calculated at any one station in the South Coast AQMD jurisdiction.

n) Exceedance statistics are calculated with a dataset that aggregates the highest concentration at any station in the South Coast Air Basin for each day and pollutant. Therefore, concentrations used to calculate exceedances are the maximum value observed at any station in the South Coast

Air Basin. Number of daily exceedances are the total number of days that the indicated concentration is exceeded at any station in the South Coast Air Basin. Statistics in concentration units are simply the maxium value at any station in the South Coast Air Basin.

Four near-road sites measuring one or more of the pollutants PM2.5, CO and/or NO2 are operating near the following freeways: 1-5, 1-10, CA-60 and I-710.

			Carb	on Mor	noxide ^{a)}					Oz	one ^{b)}						Nitroger	n Dioxide	c)	Sulf	fur Diox	tide ^{d)}
											Numbe	er of Days S	Standard Ex	ceeded								
				Max	Max		Max.	Max.	Fourth	Old	Current	2008	1997	Current	Current		Max	98 th	Annual		Max.	99 th
			No. Days	Conc.	Conc.	No. Davs	Conc.	Conc.	High	> 0.124	> 0.070	Federal > 0.075	> 0.084	> 0.09	State > 0.070	NO. Davs	Conc.	Conc	Average AAM	No. Davs	Conc.	Conc
Sour	ce/Receptor Area	Station	of	ppm	ppm	of	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	of	ppb	ppb	Conc.	of	ppb	ppb
No	Location	No.	Data	1-hour	8-hour	Data	1-hour	8-hour	8-hour	1-hour	8-hour	8-hour	8-hour	1-hour	8-hour	Data	1-hour	1-hour	ppb	Data	1-hour	1-hour
LOS	ANGELES COUNTY																					
1	Central LA	087	359	1.9	1.5	332	0.185	0.118	0.093	1	22	16	6	14	22	364	61.8	54.7	16.9	333	3.8	3.3
2	Northwest Coastal LA County	091 820	365	2.0	1.2	357	0.134	0.092	0.078	1	8	5	1	6	8	360	76.6	43.9	10.6			2.2
4	South Coastal LA County 1	072		1.0	1.5		0.117	0.074	0.000								J9.1	50.9	9.5		0.0	5.5
4	South Coastal LA County 2	077																				
4	South Coastal LA County 3	033																				9.4
4	South Coastal LA County 4	039				332	0.105	0.083	0.071	0	4	2	0	4	4	357	75.3	56.3	12.8			
4	I-710 Near Road ^{##}	032														355	90.3	79.1	22.3			
6	West San Fernando Valley	200	349	2.0	1./	345	0.142	0.115	0.097	0	49	23	12	14	49	305	57.2	50.1 52.4	12.1			
8	West San Gabriel Valley	088	361	2.6	2.2	354	0.155	0.108	0.102	9	60	44	20	41	49 60	354	61.2	32.4 49.7	14.5			
9	East San Gabriel Valley 1	060	349	2.4	2.0	347	0.168	0.125	0.105	11	61	43	19	53	61	347	64.8	54.1	13.6			
9	East San Gabriel Valley 2	591	310	2.3	1.9	348	0.173	0.138	0.124	17	97	71	32	76	97	366	50.4	41.9	8.5			
10	Pomona/Walnut Valley	075	363	1.5	1.1	353	0.180	0.124	0.106	10	84	53	29	51	84	355	67.9	59.8	18.3			
11	South San Gabriel Valley	085	362	3.1	1.7	356	0.169	0.114	0.089	3	23	15	7	20	23	365	69.2	57.8	17.8			
12	South Central LA County Santa Clarita Valley	000	364	4.5	3.1	354	0.152	0.115	0.072	1 10	4	3 56	2	3	4	362	12.3	60.5 35.9	14.5			
15		090	505	1.2	0.8	540	0.140	0.122	0.100	10	15	50	29	++	15	501	40.5	55.9	9.4			
ORA 16	NGE COUNTY North Orange County	2177	247	2.1	1.2	340	0.171	0.112	0.088	2	22	10	6	15	22	247	57.2	50.1	12.7			
17	Central Orange County	3176	361	2.1	1.2	340	0.171	0.115	0.088	2	25 15	19	3	6	25 15	3647	70.9	52.1	12.7			
17	I-5 Near Road ^{##}	3131	359	2.4	2.0											365	69.9	52.6	18.8			
19	Saddleback Valley	3812	366	1.7	0.8	364	0.171	0.122	0.090	1	32	25	10	20	32							
RIVE	ERSIDE COUNTY																					
22	Corona/Norco Area	4155																				
23	Metropolitan Riverside County 1	4144	361	1.9	1.4	348	0.143	0.115	0.102	6	81	59	27	46	81	359	66.4	54.1	13.6	356	2.2	1.7
23	Metropolitan Riverside County 3	4165	359	1.8	1.5	350	0.140	0.117	0.103	7	89	62	32	51	89	352	58.1	49.9	12.3			
24	Perris Valley	4149				358	0.125	0.106	0.097	1	52	48	14	19	52							
25 26	Temecula Valley	4158	338	0.9	0.7	355 364	0.130	0.100	0.093	1	52 37	30 20	2	18	52 37	545	43.0	37.9	/.4			
29	San Gorgonio Pass	4164				358	0.150	0.115	0.104	3	68	48	21	29	68	363	51.1	47.1	8.5			
30	Coachella Valley 1**	4137	365	0.8	0.5	360	0.119	0.094	0.089	0	49	28	5	9	49	365	47.4	34.3	6.6			
30	Coachella Valley 2**	4157				358	0.097	0.084	0.081	0	42	17	0	2	42							
30	Coachella Valley 3**	4032																				
SAN	BERNARDINO COUNTY																					
32	Northwest San Bernardino Valley	5175	364	1.5	1.1	360	0.158	0.123	0.116	15	114	87	43	82	114	364	55.4	44.8	13.9			
33	I-10 Near Road ^{##}	5035	363	1.5	1.2											345	94.2	75.1	28.7			
34	Central San Bernardino Valley 1	5197	358	17	1.2	348	0.151	0 1 1 1	0 105	8	89	65	27	56	89	360	101.0 66.4	78.0 57.9	29.1 18.7	363	25	17
34	Central San Bernardino Valley 2	5203	360	1.9	1.4	359	0.162	0.128	0.122	15	128	110	60	89	128	365	54.0	45.6	14.9			
35	East San Bernardino Valley	5204				361	0.173	0.136	0.125	16	141	127	78	104	141							
37	Central San Bernardino Mountains	5181				364	0.159	0.139	0.117	7	118	97	55	69	118							
38	East San Bernardino Mountains	5818																				
	DISTRICT MAXIMUM ^{e)}			4.5	3.1		0.185	0.139	0.125	17	141	127	78	104	141		101.6	86.3	29.1		6.0	3.3
	SOUTH COAST AIR BASIN ^{f)}			4.5	3.1		0.185	0.139	0.125	27	157	142	97	132	157		101.6	86.3	29.1		6.0	3.3
* Ín	complete data ** Salton	Sea Air B	Sasin		Pollutant	not mon	itored	nnn	n - Parts Pe	r Million par	ts of air by	volume	r	onb – Parts I	er Billion n	arts of air	 by volum 	e	AAM = A	Annual A	rithmetic M	Aean

* Incomplete data. a)

b)

** Salton Sea Air Basin -- Pollutant not monitored

ppm - Parts Per Million parts of air, by volume

ppb - Parts Per Billion parts of air, by volume

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, CA 91765-4182 AQMD

www.aqmd.gov

The current (2015) O₃ federal standard was revised effective December 28, 2015.

c) d)

The federal and state 8-hour CO standards (9 ppm and 9.0 ppm) and the federal and state 1-hour CO standards (35 ppm and 20 ppm) were not exceeded.

e)

The O_2 federal 1-hour standard is 100 ppb annual standard is annual arithmetic mean NO2 > 0.0534 ppm (53.4 ppb). The state 1-hour and annual standards are 0.18 ppm and 0.030 ppm. The federal SO_2 1-hour standard is 75 ppb (0.075 ppm). The state standards are 1-hour average SO2 > 0.25 ppm (250 ppb) and 24-hour average SO2 > 0.04 ppm (40 ppb). District Maximum is the maximum value calculated at any station in the South Coast AQMD Jurisdiction Concentrations are the maximum value observed at any station in the South Coast Air Basin. Number of daily exceedances are the total number of days that the indicated concentration is varied at any station in the South Coast Air Basin. Number of daily exceedances are the total number of days that the indicated concentration is varied at any station in the South Coast Air Basin. Number of daily exceedances are the total number of days that the indicated concentration is varied at any station in the South Coast Air Basin. Number of daily exceedances are the total number of days that the indicated concentration is varied at any station in the South Coast Air Basin. f) exceeded at any station in the South Coast Air Basin

Four near-road sites measuring one or more of the pollutants PM2.5, CO and/or NO2 are operating near the following freeways: I-5, I-10, CA-60 and I-710.

For information on the current standard levels and most recent revisions please refer to "Appendix II - Current Air Quality" of the "2016 AQMP" which can be accessed at http://www.aqmd.gov/docs/default-source/clean-air-plans/air-qualitymanagement-plans/2016-air-quality-management-plan/final-2016-aqmp/appendix-ii.pdf?sfvrsn=4. Maps showing the source/receptor area boundaries can be accessed via the Internet by entering your address in the South Coast AQMD Air Quality Forecast Map at www.aqmd.gov/forecast. A printed map or copy of the AQMP Appendix II is also available free of charge from the South Coast AQMD Public Information Center at 1-800-CUT-SMOG.

				Suspende	d Particulate	es PM10 ^{e) k)}	+		Fine	Particulate	s PM2.5 ^{g) #}		Lea	d ^{i) ++}	PM1(Sulfate ^{j)}
C/D	2020	Station	No. Days	Max. Conc. in	No. (%) Exceeding <u>Federal</u> $> 150 \mu g/m^3$	Samples g Standards \underline{State} $> 50 \mu g/m^3$	Annual. Average Conc. ^{f)}	No. Days	Max. Conc. in	98 th Percentile Conc. in	No (%) Samples Exceeding Federal Std.	Annual. Average Conc. ^{h)}	Max. Monthly Average	Max. 3-Months Rolling	No. Days	Max. Conc. in
Source/R	L contion	No	0I Doto	µg/m ² 24 hour	24 hour	24 hour	(AAW)	01 Doto	$\mu g/m^2$	$\mu g/m^2$	24 hour	(AAWI)	ug/m ³	Hug/m ³	0I Doto	24 hour
INO.	CELES COUNTY	NO.	Data	24-nour	24-110u1	24-110u1	µg/m	Data	24-110ur	24-110UI	24-11001	μg/m	μg/m	µg/m	Data	24-110ui
LOS ANG	GELES COUNTY	097	227	77	0	24 (70)	22.0	252	47.20	28.00	2(10)	10.21	0.012	0.011	45	2.2
1	Northwest Coastal I A County	087	337	//	0	24 (7%)	23.0	333	47.30	28.00	2(1%)	12.51	0.015	0.011	45	3.3
2	Southwest Coastal LA County	820	27	12			22.5						0.008	0.005		
3	South Coastal LA County 1	820 072	57	45	0	0	22.3	117	28.10	26.10		11.26	0.008	0.005		
4	South Coastal LA County 1	072	42			2 (50/)		257	20.00	20.10	1 (00/)	11.20		0.006		
4	South Coastal LA County 2	077	42	59	0	2(3%)	24.9	557	39.00	28.00	1 (0%)	11.56	0.008	0.008	14	2.2
4	South Coastal LA County 4	033	12	54	0	2(17%)	27.0								14	2.5
4	L 710 Near Road##	039						356	44.00	31.50	2 (1%)	12.03				
-	West San Fernando Valley	032						116	27.60	26.40	2 (170)	10.13				
7	Fast San Fernando Valley	200						110	27.00	20.40	0	10.15				
8	West San Gabriel Valley	088						117	34.90	31.20	0	11.06				
9	Fast San Gabriel Valley 1	060	43	95	0	8 (19%)	37.7	116	33.00	25.80	0	11.00	0.010	0.007	45	3.1
9	East San Gabriel Valley 2	591	333	105	0	9(3%)	25.2						0.010			
10	Pomona/Walnut Valley	075	555	105	0) (570)	23.2									
10	South San Gabriel Valley	075						116	35.40	30.50	0	13.22	0.012	0.011		
12	South Central LA County	112						352	43 20	34.10	7 (2%)	13.57	0.012	0.009		
13	Santa Clarita Valley	090	36	48	0	0	22.5			54.10			0.010			
ODANCI	E COLINEY	070	50	10	0	0	22.5									
16	North Orange County	3177														
17	Central Orange County	3176	320	120		13 (4%)	23.0	355	41.40	27.10	1 (0%)	11.27				3.3
17	L 5 Near Road ^{##}	3170	329	120	0	13 (470)	23.9	333	41.40	27.10	1 (0%)	11.27			44	5.5
10	Saddleback Valley	3812	42	53		1 (2%)	16.8	120	35.00	32.70	0	8.81				
DIVEDEI	DE COUNTY	5012	72	55	0	1 (270)	10.0	120	55.00	52.10	0	0.01				
KIVEKSI	Corono Noroo Aroo	4155	4.4	100	0	10 (220/)	20.1									
22	Matropoliton Piverside County 1	4133	220	100	0	10(25%) 110(24%)	39.1	257	41.00	20.60	4 (1%)	12.62	0.016	0.010	84	5.2
23	Metropolitan Riverside County 1	4144	204	104	0	110(34%) 154(51%)	52.2	259	28 70	29.00	4 (170) 5 (1.04)	14.03	0.010	0.010	04	5.2
23	Parris Valley	4103	304	77	0	6(16%)	35.0	556	38.70	34.70	J(1.70)	14.03				
24	Flainora Vallay	4149	224	91	0	7 (204)	22.0									
25	Tomogula Vallay	4136	554	04	0	7 (270)	22.0									
20	San Gorgonio Pass	4031	42				10.2									
20	Coachalla Vallay 1**	4104	251	40	0	0	20.4	122	22.00	16.00		6.42				
30	Coachella Valley 2**	4157	317	40	0	8 (3%)	20.4	122	25.90	20.20	0	8.41			89	27
30	Coachella Valley 3**	4032	320	259	1 (0%)	69 (22%)	38.0	121	25.00	20.20	0	0.41			89	2.1
SANDER	PNA PDINO COLINTY	4032	520	237	1 (070)	0)(2270)	50.0									
22	Northwest San Pernerdine Valley	5175	205	63	0	12 (40%)	20.5									
32	I 10 Near Doad#	5035	305	03	0	12 (470)	30.5									
33	CA 60 Near Road ^{##}	5035						356	53.10	33.70	4 (1%)	14.36				
34	Central San Bernardino Valley 1	5197	40	61		6 (15%)	35.8	117	46.10	27.40	4(1%) 1(1%)	11.95			44	3.0
34	Central San Bernardino Valley 2	5203	320	80	0	81 (25%)	387	117	25 70	27.40	1 (170)	11.95	0.010	0.009	44	5.0
35	Fast San Bernardino Valley	5205	40	57	0	1 (3%)	23.1	115	23.10	24.70	U	11.00	0.010	0.009		
35	Central San Bernardino Mountaine	5181	40	51	0	1 (3%)	23.4 18.1									
38	East San Bernardino Mountains	5919	40	51	0	1 (570)	10.1	58	24.30	20.40	0	7.62				
50	DISTRICT MAXIMUM ¹	3010		250	1	154	52.2	50	52.1	24.1	7	14.26	0.016	0.011		5.2
				239	1	134	52.2		52.1	24.1	/	14.30	0.010	0.011		5.2
	SUUTH CUAST AIR BASIN ""			124	0	1/3	52.2	L	53.1	34.1	13	14.36	0.016	0.011		5.2
* Incom +	plete data due to the site improvement. High PM10 (> 155 µg/m ³) data recorde	ed in the Co	** Salto achella Va	on Sea Air Bas llev and the B	n asin attributed to	µg/m ³ – Mic high winds are e	rograms per o excluded beca	cubic meter ause they li	r of air kely meet the e	A exclusion criter	AM – Annual Arithn ia specified in the U.	netic Mean S. EPA Exce	ptional Event	Pollutan Rule, Exceptio	t not monito nal event	red

demonstrations will be submitted to U.S. EPA for events that have regulatory significance.

PM2.5 concentrations above the 24-hour standard attributed to wildfire smoke and fireworks are excluded because they likely meet the exclusion criteria specified in the U.S. EPA Exceptional Event Rule. Exceptional event demonstrations will be submitted to U.S. EPA for events that have regulatory significance.

PM10 statistics listed above are based on combined Federal Reference Method (FRM) and Federal Equivalent Method (FEM) data. e)

State annual average (AAM) PM10 standard is 20 µg/m³. Federal annual PM10 standard (50 µg/m³) was revoked in 2006. f)

PM2.5 statistics listed above represent FRM data only with the exception of Central Orange County, 1-710 Near Road, Metropolitan Riverside County 1 and 3, CA-60 Near Road, and South Coastal LA County 2 where FEM PM2.5 measurements g) are used to supplement missing FRM measurements because they pass the screening criteria in the South Coast AQMD Continuous Monitor Comparability Assessment and Request for Waiver dated July 1, 2021.

h) The Federal and State annual standards are 12.0 µg/m³.

Federal lead standard is 3-months rolling average > $0.15 \,\mu$ g/m³; state standard is monthly average ³ $1.5 \,\mu$ g/m³. Lead standards were not exceeded. i)

State sulfate standard is 24-hour 3 25 μ g/m³. There is no federal standard for sulfate. j)

Filter-based measurements for PM10 from March 28, 2020 to June 26, 2020 are not available due the COVID-19 Pandemic k)

District Maximum is the maximum value calculated at any station in the South Coast AQMD Jurisdiction 1)

Concentrations are the maximum value observed at any station in the South Coast Air Basin. Number of daily exceedances are the total number of days that the indicated concentration is exceeded at any station in the South Coast Air Basin m)

Higher lead concentrations were recorded at near-source monitoring sites immediately downwind of stationary lead sources. Maximum monthly and 3-month rolling averages recorded were 0. 096 µg/m³ and 0.059 µg/m³, respectively. ++

Four near-road sites measuring one or more of the pollutants PM2.5, CO and/or NO2 are operating near the following freeways: I-5, I-10, CA-60 and I-710.

Monitor Values Report

Geographic Area: Los Angeles-Long Beach-Anaheim, CA

Pollutant: SO2

Year: 2022

Exceptional Events: Included (if any)

Note: The * indicates the mean does not satisfy minimum data completeness criteria.

	First	Second			First	Second										
Obs	Max	Max	99th	Obs	Max	Max	Days	Annual	Exc	Monitor						EPA
1hr	1hr	1hr	Percentile	24hr	24hr	24hr	>STD	Mean	Events	Number	Site ID	Address	City	County	State	Region
8646	6.5	2.4	2	361	1.2	1.1	0	0.26	None	9	060371103	1630 N Main St, Los Angeles	Los Angeles	Los Angeles	CA	09
8538	6.1	5.6	4	357	1.5	1.3	0	0.47	None	1	060374009	1710 E. 20th Street	Signal Hill	Los Angeles	CA	09

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based. Source: U.S. EPA AirData https://www.epa.gov/air-data

Monitor Values Report

Geographic Area: Los Angeles-Long Beach-Anaheim, CA

Pollutant: SO2

Year: 2021

Exceptional Events: Included (if any)

Note: The * indicates the mean does not satisfy minimum data completeness criteria.

	First	Second			First	Second										
Obs	Max	Max	99th	Obs	Max	Max	Days	Annual	Exc	Monitor						EPA
1hr	1hr	1hr	Percentile	24hr	24hr	24hr	>STD	Mean	Events	Number	Site ID	Address	City	County	State	Region
8695	2.2	2.1	2	365	1.2	1	0	0.39	None	9	060371103	1630 N Main St, Los Angeles	Los Angeles	Los Angeles	CA	09
8588	5.9	5.5	4	360	1.3	1.2	0	0.45	None	1	060374009	1710 E. 20th Street	Signal Hill	Los Angeles	CA	09
6060	7.7	5.6	4	254	1.5	1.1	0	0.14*	None	1	060375005	7201 W. Westchester Parkway	Los Angeles	Los Angeles	CA	09

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based. Source: U.S. EPA AirData https://www.epa.gov/air-data

Monitor Values Report

Geographic Area: Los Angeles-Long Beach-Anaheim, CA

Pollutant: SO2

Year: 2020

Exceptional Events: Included (if any)

Note: The * indicates the mean does not satisfy minimum data completeness criteria.

	First	Second			First	Second										
Obs	Max	Max	99th	Obs	Max	Max	Days	Annual	Exc	Monitor						EPA
1hr	1hr	1hr	Percentile	24hr	24hr	24hr	>STD	Mean	Events	Number	Site ID	Address	City	County	State	Region
7920	3.8	3.7	3	333	0.9	0.8	0	0.23*	None	9	060371103	1630 N Main St, Los Angeles	Los Angeles	Los Angeles	CA	09
8612	6	4.9	3	361	1.2	0.9	0	0.31	None	1	060375005	7201 W. Westchester Parkway	Los Angeles	Los Angeles	CA	09

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based. Source: U.S. EPA AirData https://www.epa.gov/air-data

APPENDIX F – OPERATIONAL HRA MODELING RESULTS

Model Cancer Risk Chronic Risk Acute Risk

Maximum Cancer Risk by Pollutant at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Elevated Terrain AERMOD Run

		Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Ex	posed Individual Worker (MEIW)
Pollutant CAS	Pollutant	receptor #	2402	receptor #	11	receptor #	2
	l'onutant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		433,928	3,731,026	433,054	3,730,131	433,145	3,731,325
		30-Year Cancer	Contribution	30-Year Cancer	Contribution	25-Year Cancer	Contribution (%)
		Risk	(%)	Risk	(%)	Risk	Contribution (%)
-	ALL	1.68E-08	100%	3.89E-09	100%	2.18E-10	100%
106990	1,3-Butadiene	4.03E-10	2.39%	1.94E-10	4.98%	2.15E-11	9.83%
75354	1,1-Dichloroethene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75343	1,1-Dichloroethane	3.11E-12	0.02%	6.60E-13	0.02%	5.20E-14	0.02%
107062	1,2-Dichloroethane	4.70E-10	2.79%	9.99E-11	2.57%	7.88E-12	3.61%
71556	1,1,1-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79005	1,1,2-Trichloroethane	8.83E-13	0.01%	4.25E-13	0.01%	4.71E-14	0.02%
79345	1,1,2,2-Tetrachloroethane	5.12E-12	0.03%	2.47E-12	0.06%	2.73E-13	0.13%
75070	Acetaldehyde	5.06E-11	0.30%	1.84E-11	0.47%	1.88E-12	0.86%
107028	Acrolein	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
7664417	Ammonia	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
71432	Benzene	5.78E-09	34.35%	1.27E-09	32.68%	1.03E-10	46.94%
205992	Benzo(b)fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
56235	Carbon Tetrachloride	2.70E-12	0.02%	1.30E-12	0.03%	1.44E-13	0.07%

		Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Ex	posed Individual Worker (MEIW)
Pollutant CAS	Pollutant	receptor #	2402	receptor #	11	receptor #	2
ronutant CAS	Fondtant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		433,928	3,731,026	433,054	3,730,131	433,145	3,731,325
		30-Year Cancer	Contribution	30-Year Cancer	Contribution	25-Year Cancer	Contribution $(0/)$
		Risk	(%)	Risk	(%)	Risk	Contribution (%)
108907	Chlorobenzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
67663	Chloroform	3.55E-12	0.02%	8.23E-13	0.02%	6.89E-14	0.03%
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	5.39E-11	0.32%	1.26E-11	0.32%	1.01E-12	0.46%
106934	Ethylene Dibromide	5.39E-12	0.03%	2.59E-12	0.07%	2.87E-13	0.13%
50000	Formaldehyde	6.40E-10	3.80%	2.55E-10	6.56%	2.68E-11	12.28%
110543	Hexane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75092	Methylene Chloride	6.48E-11	0.39%	1.38E-11	0.35%	1.09E-12	0.50%
67561	Methanol	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
91203	Naphthalene	3.84E-11	0.23%	1.15E-11	0.29%	1.08E-12	0.50%
1151	РАН	8.02E-09	47.66%	1.73E-09	44.52%	3.23E-11	14.76%
100425	Styrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
127184	Tetrachloroethene	4.23E-10	2.51%	8.97E-11	2.30%	7.06E-12	3.23%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79016	Trichloroethylene	3.44E-11	0.20%	7.31E-12	0.19%	5.75E-13	0.26%
75014	Vinyl Chloride	8.29E-10	4.92%	1.76E-10	4.53%	1.39E-11	6.37%
1330207	Xylenes	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

Cancer Risk by Source for All Pollutants Combined at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Elevated Terrain AERMOD Run

	Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Expos (N	ed Individual Worker VIEIW)
Sources	receptor #	2402	receptor #	11	receptor #	2
Jources	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
	433,928	3,731,026	433,054	3,730,131	433,145	3,731,325
	30-Year Cancer	Contribution (%)	30-Year Cancer	Contribution (%)	25-Year Cancer	Contribution (%)
	Risk	Contribution (78)	Risk	Contribution (78)	Risk	Contribution (%)
ALL	1.68E-08	100%	3.89E-09	100%	2.18E-10	100%
FLARE	3.29E-10	1.95%	1.03E-10	2.66%	3.00E-12	1.37%
ICE	8.39E-10	4.99%	4.04E-10	10.38%	5.63E-11	25.77%
TOU	1.38E-08	82.07%	2.93E-09	75.34%	1.59E-10	72.86%

Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Operations - Elevated Terrain AERMOD Run

		Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exp Worker	osed Individual (MEIW)	Maximally Expo (sed Individual Worker MEIW)
Pollutant CAS	Pollutant	receptor #	2406	receptor #	11	receptor #	2	receptor #	2
I onutant CAS	ronutant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		434,113	3,731,310	433,054	3,730,131	433,145	3,731,325	433,145	3,731,325
		Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic 8-hr	Contribution (%)
		Index	Contribution (%)	Index	Contribution (%)	Index	Contribution (%)	Hazard Index	Contribution (%)
-	ALL	6.02E-05	100%	1.28E-05	100%	1.49E-05	100%	6.95E-06	100%
106990	1,3-Butadiene	1.37E-06	2.27%	2.39E-07	1.86%	3.18E-07	2.14%	7.07E-08	1.02%
75354	1,1-Dichloroethene	9.25E-09	0.02%	2.69E-09	0.02%	2.55E-09	0.02%	0.00E+00	0.00%
75343	1,1-Dichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
107062	1,2-Dichloroethane	1.77E-08	0.03%	5.13E-09	0.04%	4.86E-09	0.03%	0.00E+00	0.00%
71556	1,1,1-Trichloroethane	4.39E-10	0.00%	1.28E-10	0.00%	1.21E-10	0.00%	0.00E+00	0.00%
79005	1,1,2-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79345	1,1,2,2-Tetrachloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75070	Acetaldehyde	9.97E-08	0.17%	1.94E-08	0.15%	2.39E-08	0.16%	1.12E-08	0.16%
107028	Acrolein	3.69E-05	61.31%	7.13E-06	55.69%	8.84E-06	59.48%	4.42E-06	63.54%
7664417	Ammonia	1.23E-05	20.34%	3.56E-06	27.81%	3.38E-06	22.72%	0.00E+00	0.00%
71432	Benzene	2.24E-05	37.13%	6.26E-06	48.91%	6.08E-06	40.90%	6.08E-06	87.39%
205992	Benzo(b)fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
56235	Carbon Tetrachloride	1.83E-09	0.00%	3.20E-10	0.00%	4.26E-10	0.00%	0.00E+00	0.00%
108907	Chlorobenzene	1.77E-07	0.29%	5.15E-08	0.40%	4.87E-08	0.33%	0.00E+00	0.00%

Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Operations - Elevated Terrain AERMOD Run

		Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exp Worker	osed Individual (MEIW)	Maximally Expo (sed Individual Worker MEIW)
Pollutant CAS	Pollutant	receptor #	2406	receptor #	11	receptor #	2	receptor #	2
I onutant CAS	ronutant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		434,113	3,731,310	433,054	3,730,131	433,145	3,731,325	433,145	3,731,325
		Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic 8-hr Hazard Index	Contribution (%)
67663	Chloroform	8.09E-10	0.00%	2.14E-10	0.00%	2.15E-10	0.00%	0.00E+00	0.00%
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	3.51E-09	0.01%	1.07E-09	0.01%	1.03E-09	0.01%	0.00E+00	0.00%
106934	Ethylene Dibromide	1.10E-07	0.18%	1.92E-08	0.15%	2.55E-08	0.17%	0.00E+00	0.00%
50000	Formaldehyde	1.06E-05	17.59%	2.00E-06	15.60%	2.52E-06	16.99%	2.52E-06	3 6.30%
110543	Hexane	5.05E-10	0.00%	1.48E-10	0.00%	1.40E-10	0.00%	0.00E+00	0.00%
75092	Methylene Chloride	5.02E-08	0.08%	1.46E-08	0.11%	1.38E-08	0.09%	0.00E+00	0.00%
67561	Methanol	3.16E-09	0.01%	5.51E-10	0.00%	7.34E-10	0.00%	0.00E+00	0.00%
91203	Naphthalene	7.13E-08	0.12%	1.57E-08	0.12%	1.78E-08	0.12%	0.00E+00	0.00%
1151	РАН	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100425	Styrene	5.45E-11	0.00%	9.50E-12	0.00%	1.26E-11	0.00%	0.00E+00	0.00%
127184	Tetrachloroethene	6.19E-07	1.03%	1.80E-07	1.41%	1.71E-07	1.15%	0.00E+00	0.00%
108883	Toluene	6.05E-07	1.00%	1.76E-07	1.37%	1.67E-07	1.12%	8.43E-08	1.21%
79016	Trichloroethylene	8.83E-09	0.01%	2.57E-09	0.02%	2.43E-09	0.02%	0.00E+00	0.00%
75014	Vinyl Chloride	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
1330207	Xylenes	2.81E-07	0.47%	8.16E-08	0.64%	7.73E-08	0.52%	0.00E+00	0.00%

Chronic Hazard Index by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Operations - Elevated Terrain AERMOD Run									
	Point of Maxim	um Impact (PMI)	Maximally Exposed Individual Resident (MEIR)		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)		
_	receptor #	2406	receptor #	11	receptor #	2	receptor #	2	
Sources	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
	434,113	3,731,310	433,054	3,730,131	433,145	3,731,325	433,145	3,731,325	
	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic 8-hr Hazard Index	Contribution (%)	
ALL	6.02E-05	100%	1.28E-05	100%	1.49E-05	100%	6.95E-06	100%	
FLARE	1.84E-07	0.31%	6.62E-08	0.52%	6.45E-08	0.43%	5.82E-08	0.84%	
ICE	4.06E-05	67.44%	7.08E-06	55.30%	9.43E-06	63.51%	5.80E-06	83.35%	
TOU	2.01E-05	<u>33.</u> 42%	5.86E-06	45.78%	5.55E-06	37.36 %	5.55E-06	79.82%	

Maximum Acute Hazard Index by Pollutant at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Elevated Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	2405	receptor #	10	receptor #	2
i onutunt cAs	ronatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		434,106	3,731,282	433,233	3,730,037	433,145	3,731,325
		Acute Hazard	Contribution (%)	Acute Hazard	Contribution (%)	Acute Hazard	Contribution (%)
	A11	1 295 02	100%		100%		100%
-	ALL 1.2 Dute diana	1.28E-02	100%	2.07E-03	100%	2.51E-03	100%
106990	1,3-Butadiene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
/5354	1,1-Dichloroethene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75343	1,1-Dichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
107062	1,2-Dichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
71556	1,1,1-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79005	1,1,2-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79345	1,1,2,2-Tetrachloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75070	Acetaldehyde	5.31E-05	0.41%	8.57E-06	0.41%	1.04E-05	0.41%
107028	Acrolein	9.39E-03	73.35%	1.51E-03	73.29%	1.84E-03	73.32%
7664417	Ammonia	3.24E-05	0.25%	6.86E-06	0.33%	7.47E-06	0.30%
71432	Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
205992	Benzo(b)fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
56235	Carbon Tetrachloride	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
108907	Chlorobenzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
67663	Chloroform	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

		Point of Maximu	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Pollutant CAS	Pollutant	receptor #	2405	receptor #	10	receptor #	2	
i onutant cho	i onatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		434,106	3,731,282	433,233	3,730,037	433,145	3,731,325	
		Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
100414	Ethyl Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
106934	Ethylene Dibromide	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
50000	Formaldehyde	3.32E-03	2 5.96%	5.36E-04	2 5.93%	6.50E-04	2 5.94%	
110543	Hexane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
75092	Methylene Chloride	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
67561	Methanol	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
91203	Naphthalene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
1151	PAH	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
100425	Styrene	5.02E-09	0.00%	8.09E-10	0.00%	9.82E-10	0.00%	
127184	Tetrachloroethene	3.37E-08	0.00%	7.75E-09	0.00%	8.20E-09	0.00%	
108883	Toluene	2.56E-06	0.02%	5.20E-07	0.03%	5.75E-07	0.02%	
79016	Trichloroethylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
75014	Vinyl Chloride	9.23E-10	0.00%	1.88E-10	0.00%	2.08E-10	0.00%	
1330207	Xylenes	3.55E-07	0.00%	7.63E-08	0.00%	8.27E-08	0.00%	

Target Organ(s)	Target Organ(s)	Target Organ(s)
EYE	EYE	EYE

Acute Hazard Index by Source for All Pollutants Combined at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Elevated Terrain AERMOD Run								
	Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)			
	receptor #	2405	receptor #	10	receptor #	2		
Sources	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)		
	434,106	3,731,282	433,233	3,730,037	433,145	3,731,325		
	Acute Hazard	Contribution (9/)	Acute Hazard	Contribution (9/)	Acute Hazard	Contribution (9/)		
	Index	Index Index		Contribution (%)	Index	Contribution (%)		
ALL	1.28E-02	100%	2.07E-03	100%	2.51E-03	100%		
FLARE	9.40E-07	0.01%	3.05E-07	0.01%	1.98E-07	0.01%		
ICE	1.27E-02	99.55%	2.05E-03	99.36%	2.49E-03	99.44%		
TOU	5.66E-05	0.44%	1.30E-05	0.63%	1.38E-05	0.55%		

Target Organ(s)	Target Organ(s)	Target Organ(s)
EYE	EYE	EYE

Maximum Cancer Risk by Pollutant at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Flat Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Pollutant CAS	Pollutant	receptor #	2405	receptor #	11	receptor #	2	
	i onutant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		434,106	3,731,282	433,054	3,730,131	433,145	3,731,325	
		30-Year Cancer	Contribution	30-Year Cancer	Contribution	25-Year Cancer	Contribution (%)	
		Risk	(%)	Risk	(%)	Risk	Contribution (%)	
-	ALL	1.41E-08	100%	4.27E-09	100%	2.68E-10	100%	
106990	1,3-Butadiene	1.17E-09	8.27%	2.04E-10	4.77%	2.83E-11	10.56%	
75354	1,1-Dichloroethene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
75343	1,1-Dichloroethane	1.92E-12	0.01%	6.46E-13	0.02%	6.22E-14	0.02%	
107062	1,2-Dichloroethane	2.92E-10	2.07%	9.79E-11	2.29%	9.43E-12	3.51%	
71556	1,1,1-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
79005	1,1,2-Trichloroethane	2.56E-12	0.02%	4.46E-13	0.01%	6.21E-14	0.02%	
79345	1,1,2,2-Tetrachloroethane	1.48E-11	0.11%	2.59E-12	0.06%	3.61E-13	0.13%	
75070	Acetaldehyde	9.58E-11	0.68%	1.90E-11	0.44%	2.44E-12	0.91%	
107028	Acrolein	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
7664417	Ammonia	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
71432	Benzene	3.94E-09	27.96%	1.25E-09	29.29%	1.24E-10	46.12%	
205992	Benzo(b)fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
56235	Carbon Tetrachloride	7.80E-12	0.06%	1.36E-12	0.03%	1.90E-13	0.07%	

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	2405	receptor #	11	receptor #	2
Tonucant CAS	ronatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		434,106	3,731,282	433,054	3,730,131	433,145	3,731,325
		30-Year Cancer	Contribution	30-Year Cancer	Contribution	25-Year Cancer	$C_{outsibution}(0/)$
		Risk	(%)	Risk	(%)	Risk	Contribution (%)
108907	Chlorobenzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
67663	Chloroform	2.79E-12	0.02%	8.15E-13	0.02%	8.42E-14	0.03%
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	3.47E-11	0.25%	1.23E-11	0.29%	1.20E-12	0.45%
106934	Ethylene Dibromide	1.56E-11	0.11%	2.72E-12	0.06%	3.79E-13	0.14%
50000	Formaldehyde	1.39E-09	9.86%	2.65E-10	6.20%	3.50E-11	13.04%
110543	Hexane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75092	Methylene Chloride	4.04E-11	0.29%	1.35E-11	0.32%	1.30E-12	0.49%
67561	Methanol	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
91203	Naphthalene	5.07E-11	0.36%	1.16E-11	0.27%	1.37E-12	0.51%
1151	PAH	6.24E-09	44.26%	2.12E-09	49.65%	3.86E-11	14.37%
100425	Styrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
127184	Tetrachloroethene	2.61E-10	1.85%	8.78E-11	2.06%	8.44E-12	3.15%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79016	Trichloroethylene	2.13E-11	0.15%	7.15E-12	0.17%	6.88E-13	0.26%
75014	Vinyl Chloride	5.17E-10	3.67%	1.73E-10	4.05%	1.67E-11	6.21%
1330207	Xylenes	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

Cancer Risk by Source for All Pollutants Combined at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Flat Terrain AERMOD Run

	Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Sources	receptor #	2405	receptor #	11	receptor #	2	
Jources	UTM Easting (m)		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
	434,106	3,731,282	433,054	3,730,131	433,145	3,731,325	
	30-Year Cancer	Contribution (%)	30-Year Cancer		25-Year Cancer	Contribution (%)	
	Risk	Contribution (%)	Risk	Contribution (%)	Risk	Contribution (%)	
ALL	1.41E-08	100%	4.27E-09	100%	2.68E-10	100%	
FLARE	2.89E-10	2.05%	1.24E-10	2.90%	3.52E-12	1.31%	
ICE	3.06E-09	21.69%	5.34E-10	12.50%	7.43E-11	27.70%	
TOU	1.07E-08	76.26%	3.61E-09	84.60%	1.90E-10	70.99%	

Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Operations - Flat Terrain AERMOD Run

		Point of Maxim	um Impact (PMI)	Maximally Exposed Individual Resident (MEIR)		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	2405	receptor #	11	receptor #	2	receptor #	2
i onutant cho	i onatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		434,106	3,731,282	433,054	3,730,131	433,145	3,731,325	433,145	3,731,325
		Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic 8-hr Hazard Index	Contribution (%)
-	ALL	7.45E-05	100%	1.64E-05	100%	1.89E-05	100%	9.03E-06	100%
106990	1,3-Butadiene	1.81E-06	2.42%	3.15E-07	1.92%	4.20E-07	2.22%	9.33E-08	1.03%
75354	1,1-Dichloroethene	9.88E-09	0.01%	3.32E-09	0.02%	3.05E-09	0.02%	0.00E+00	0.00%
75343	1,1-Dichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
107062	1,2-Dichloroethane	1.89E-08	0.03%	6.32E-09	0.04%	5.82E-09	0.03%	0.00E+00	0.00%
71556	1,1,1-Trichloroethane	4.69E-10	0.00%	1.58E-10	0.00%	1.45E-10	0.00%	0.00E+00	0.00%
79005	1,1,2-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79345	1,1,2,2-Tetrachloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75070	Acetaldehyde	1.27E-07	0.17%	2.52E-08	0.15%	3.10E-08	0.16%	1.45E-08	0.16%
107028	Acrolein	4.72E-05	63.38%	9.27E-06	56.49%	1.15E-05	60.52%	5.73E-06	63.43%
7664417	Ammonia	1.31E-05	17.58%	4.39E-06	26.75%	4.04E-06	21.34%	0.00E+00	0.00%
71432	Benzene	2.44E-05	32.78%	7.75E-06	47.24%	7.33E-06	38.72%	7.33E-06	81.16%
205992	Benzo(b)fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
56235	Carbon Tetrachloride	2.42E-09	0.00%	4.22E-10	0.00%	5.62E-10	0.00%	0.00E+00	0.00%

Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Operations - Flat Terrain AERMOD Run

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	2405	receptor #	11	receptor #	2	receptor #	2
ronatant CAS	ronutant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		434,106	3,731,282	433,054	3,730,131	433,145	3,731,325	433,145	3,731,325
		Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic 8-hr Hazard Index	Contribution (%)
108907	Chlorobenzene	1.89E-07	0.25%	6.34E-08	0.39%	5.83E-08	0.31%	0.00E+00	0.00%
67663	Chloroform	9.11E-10	0.00%	2.66E-10	0.00%	2.62E-10	0.00%	0.00E+00	0.00%
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	3.71E-09	0.00%	1.31E-09	0.01%	1.22E-09	0.01%	0.00E+00	0.00%
106934	Ethylene Dibromide	1.45E-07	0.19%	2.53E-08	0.15%	3.37E-08	0.18%	0.00E+00	0.00%
50000	Formaldehyde	1.37E-05	18.35%	2.60E-06	15.88%	3.29E-06	17.37%	3.29E-06	36.41%
110543	Hexane	5.39E-10	0.00%	1.82E-10	0.00%	1.67E-10	0.00%	0.00E+00	0.00%
75092	Methylene Chloride	5.37E-08	0.07%	1.79E-08	0.11%	1.65E-08	0.09%	0.00E+00	0.00%
67561	Methanol	4.17E-09	0.01%	7.28E-10	0.00%	9.69E-10	0.01%	0.00E+00	0.00%
91203	Naphthalene	8.73E-08	0.12%	2.00E-08	0.12%	2.26E-08	0.12%	0.00E+00	0.00%
1151	РАН	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100425	Styrene	7.19E-11	0.00%	1.25E-11	0.00%	1.67E-11	0.00%	0.00E+00	0.00%
127184	Tetrachloroethene	6.61E-07	0.89%	2.22E-07	1.35%	2.04E-07	1.08%	0.00E+00	0.00%
108883	Toluene	6.47E-07	0.87%	2.16E-07	1.32%	1.99E-07	1.05%	1.01E-07	1.12%
79016	Trichloroethylene	9.43E-09	0.01%	3.17E-09	0.02%	2.91E-09	0.02%	0.00E+00	0.00%
75014	Vinyl Chloride	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
1330207	Xylenes	3.00E-07	0.40%	1.01E-07	0.61%	9.25E-08	0.49%	0.00E+00	0.00%

Chronic Hazard Index by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor FRB Landfill RNG Facility - Operations - Flat Terrain AERMOD Run								
Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)		
	receptor #	2405	receptor #	11	receptor #	2	receptor #	2
Sources	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
	434,106	3,731,282	433,054	3,730,131	433,145	3,731,325	433,145	3,731,325
	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic 8-hr Hazard Index	Contribution (%)
ALL	7.45E-05	100%	1.64E-05	100%	1.89E-05	100%	9.03E-06	100%
FLARE	1.85E-07	0.25%	7.93E-08	0.48%	7.58E-08	0.40%	6.83E-08	0.76%
ICE	5.36E-05	71.91%	9.36E-06	57.03%	1.25E-05	65.76%	7.65E-06	84.68%
TOU	2.15E-05	28 .85%	7.22E-06	44.03%	6.64E-06	35.06%	6.64E-06	73.50%

Maximum Acute Hazard Index by Pollutant at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Flat Terrain AERMOD Run

		Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)		
Pollutant CAS	Pollutant	receptor #	2403	receptor #	10	receptor #	2	
	i onatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		433,975	3,731,132	433,233	3,730,037	433,145	3,731,325	
		Acute Hazard	Contribution (9/)	Acute Hazard	Contribution (%)	Acute Hazard	Contribution (%)	
		Index	Contribution (%)	Index	Contribution (%)	Index	Contribution (%)	
-	ALL	2.19E-02	100%	2.76E-03	100%	3.34E-03	100%	
106990	1,3-Butadiene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
75354	1,1-Dichloroethene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
75343	1,1-Dichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
107062	1,2-Dichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
71556	1,1,1-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
79005	1,1,2-Trichloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
79345	1,1,2,2-Tetrachloroethane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
75070	Acetaldehyde	9.08E-05	0.41%	1.14E-05	0.41%	1.39E-05	0.41%	
107028	Acrolein	1.60E-02	73.37%	2.02E-03	73.29%	2.45E-03	73.32%	
7664417	Ammonia	4.88E-05	0.22%	9.14E-06	0.33%	9.95E-06	0.30%	
71432	Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
205992	Benzo(b)fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
56235	Carbon Tetrachloride	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
108907	Chlorobenzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	

		Point of Maximum Impact (PMI)		Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	2403	receptor #	10	receptor #	2
ronatant CAS	Pollutant CAS Pollutant		UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		433,975	3,731,132	433,233	3,730,037	433,145	3,731,325
		Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)
67663	Chloroform	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
106934	Ethylene Dibromide	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
50000	Formaldehyde	5.68E-03	2 5.97%	7.15E-04	2 5.93%	8.67E-04	2 5.94%
110543	Hexane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75092	Methylene Chloride	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
67561	Methanol	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
91203	Naphthalene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
1151	PAH	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100425	Styrene	8.58E-09	0.00%	1.08E-09	0.00%	1.31E-09	0.00%
127184	Tetrachloroethene	4.82E-08	0.00%	1.03E-08	0.00%	1.09E-08	0.00%
108883	Toluene	3.94E-06	0.02%	6.93E-07	0.03%	7.66E-07	0.02%
79016	Trichloroethylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75014	Vinyl Chloride	1.42E-09	0.00%	2.51E-10	0.00%	2.77E-10	0.00%
1330207	Xylenes	5.30E-07	0.00%	1.02E-07	0.00%	1.10E-07	0.00%

Target Organ(s)	Target Organ(s)	Target Organ(s)
EYE	EYE	EYE

Acute Hazard Index by Source for All Pollutants Combined at PMI, MEIR, and MEIW FRB Landfill RNG Facility - Operations - Flat Terrain AERMOD Run							
	Point of Maxim	um Impact (PMI)	Maximally Exp Residen	osed Individual t (MEIR)	Maximally Exp Worker	ximally Exposed Individual Worker (MEIW)	
	receptor #	2403	receptor #	10	receptor #	2	
Sources	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
	433,975	3,731,132	433,233	3,730,037	433,145	3,731,325	
	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	
ALL	2.19E-02	100%	2.76E-03	100%	3.34E-03	100%	
FLARE	1.65E-06	0.01%	4.06E-07	0.01%	2.64E-07	0.01%	
ICE	2.18E-02	99.63%	2.74E-03	99.35%	3.32E-03	99.44%	
TOU	8.10E-05	0.37%	1.74E-05	0.63%	1.83E-05	0.55%	

Target Organ(s)	Target Organ(s)	Target Organ(s)
EYE	EYE	EYE